Schizophrenia Polygenic Risk Score as a Predictor of Antipsychotic Efficacy in First-Episode Psychosis.
Adult
Antipsychotic Agents
/ therapeutic use
Episode of Care
Female
Genome-Wide Association Study
Humans
Male
Multifactorial Inheritance
Predictive Value of Tests
Prognosis
Psychopathology
Psychotic Disorders
/ diagnosis
Risk Assessment
/ methods
Schizophrenia
/ diagnosis
Schizophrenic Psychology
Treatment Outcome
Antipsychotics
First Episode Psychosis
Polygenic Risk Score
Schizophrenia
Journal
The American journal of psychiatry
ISSN: 1535-7228
Titre abrégé: Am J Psychiatry
Pays: United States
ID NLM: 0370512
Informations de publication
Date de publication:
01 01 2019
01 01 2019
Historique:
pubmed:
6
11
2018
medline:
24
10
2019
entrez:
6
11
2018
Statut:
ppublish
Résumé
Pharmacogenomic studies of antipsychotics have typically examined effects of individual polymorphisms. By contrast, polygenic risk scores (PRSs) derived from genome-wide association studies (GWAS) can quantify the influence of thousands of common alleles of small effect in a single measure. The authors examined whether PRSs for schizophrenia were predictive of antipsychotic efficacy in four independent cohorts of patients with first-episode psychosis (total N=510). All study subjects received initial treatment with antipsychotic medication for first-episode psychosis, and all were genotyped on standard single-nucleotide polymorphism (SNP) arrays imputed to the 1000 Genomes Project reference panel. PRS was computed based on the results of the large-scale schizophrenia GWAS reported by the Psychiatric Genomics Consortium. Symptoms were measured by using total symptom rating scales at baseline and at week 12 or at the last follow-up visit before dropout. In the discovery cohort, higher PRS significantly predicted higher symptom scores at the 12-week follow-up (controlling for baseline symptoms, sex, age, and ethnicity). The PRS threshold set at a p value <0.01 gave the strongest result in the discovery cohort and was used to replicate the findings in the other three cohorts. Higher PRS significantly predicted greater posttreatment symptoms in the combined replication analysis and was individually significant in two of the three replication cohorts. Across the four cohorts, PRS was significantly predictive of adjusted 12-week symptom scores (pooled partial r=0.18; 3.24% of variance explained). Patients with low PRS were more likely to be treatment responders than patients with high PRS (odds ratio=1.91 in the two Caucasian samples). Patients with higher PRS for schizophrenia tended to have less improvement with antipsychotic drug treatment. PRS burden may have potential utility as a prognostic biomarker.
Identifiants
pubmed: 30392411
doi: 10.1176/appi.ajp.2018.17121363
pmc: PMC6461047
mid: NIHMS1505886
doi:
Substances chimiques
Antipsychotic Agents
0
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
21-28Subventions
Organisme : NIMH NIH HHS
ID : R21 MH099868
Pays : United States
Organisme : NIMH NIH HHS
ID : K23 MH097108
Pays : United States
Organisme : NIMH NIH HHS
ID : U01 MH109536
Pays : United States
Organisme : NIMH NIH HHS
ID : P50 MH080173
Pays : United States
Organisme : NIMH NIH HHS
ID : P30 MH090590
Pays : United States
Commentaires et corrections
Type : ErratumIn
Références
Bioinformatics. 2015 May 1;31(9):1466-8
pubmed: 25550326
Lancet. 2008 Mar 29;371(9618):1085-97
pubmed: 18374841
J Clin Psychiatry. 2011 Dec;72(12):1691-6
pubmed: 21939612
Int J Neuropsychopharmacol. 2016 Apr 29;19(5):
pubmed: 26745992
Schizophr Bull. 2016 Nov;42(6):1418-1437
pubmed: 27217270
Schizophr Res. 2013 May;146(1-3):285-8
pubmed: 23433505
Am J Psychiatry. 2006 Dec;163(12):2096-102
pubmed: 17151160
Nat Rev Dis Primers. 2015 Nov 12;1:15067
pubmed: 27189524
Schizophr Bull. 2017 Sep 1;43(5):1064-1069
pubmed: 28184875
Psychopharmacology (Berl). 2009 Aug;205(2):285-92
pubmed: 19387614
Biol Psychiatry. 2001 Dec 1;50(11):898-911
pubmed: 11743944
Am J Psychiatry. 2015 Jan;172(1):52-8
pubmed: 25157964
Schizophr Bull. 2015 Nov;41(6):1248-55
pubmed: 26320194
Mol Psychiatry. 2015 Feb;20(2):150-1
pubmed: 24888364
N Engl J Med. 2005 Sep 22;353(12):1209-23
pubmed: 16172203
BMJ. 2018 Jan 10;360:j5757
pubmed: 29321194
JAMA Psychiatry. 2018 Jan 1;75(1):65-74
pubmed: 29121268
Nature. 2012 Nov 1;491(7422):56-65
pubmed: 23128226
Prog Neuropsychopharmacol Biol Psychiatry. 2013 Jul 1;44:162-7
pubmed: 23435091
Schizophr Res. 2018 Feb;192:194-204
pubmed: 28431800
Biol Psychiatry. 2017 Mar 15;81(6):470-477
pubmed: 27765268
Nat Genet. 2012 Sep;44(9):981-90
pubmed: 22885922
Mol Psychiatry. 2012 Jul;17(8):760-9
pubmed: 22083729
Am J Psychiatry. 2010 Jul;167(7):763-72
pubmed: 20194480
Schizophr Res. 1998 Jul 27;32(2):93-9
pubmed: 9713904
Transl Psychiatry. 2016 Feb 23;6:e739
pubmed: 26905411
Nature. 2014 Jul 24;511(7510):421-7
pubmed: 25056061
PLoS Genet. 2009 Jun;5(6):e1000529
pubmed: 19543373
J Clin Psychiatry. 2006 Oct;67(10):1511-21
pubmed: 17107241
Mol Psychiatry. 2005 Jan;10(1):79-104
pubmed: 15289815
Expert Opin Drug Metab Toxicol. 2011 Jan;7(1):9-37
pubmed: 21162693
Schizophr Res. 2015 Feb;161(2-3):496-500
pubmed: 25468176
Nature. 2009 Aug 6;460(7256):748-52
pubmed: 19571811
Nature. 2010 Oct 14;467(7317):832-8
pubmed: 20881960
Am J Psychiatry. 2018 Jan 1;175(1):15-27
pubmed: 28969442
Schizophr Bull. 2015 Nov;41(6):1227-36
pubmed: 26338693
Schizophr Res. 2017 Jun;184:116-121
pubmed: 27916287
Lancet Psychiatry. 2016 Apr;3(4):350-7
pubmed: 26915512
Genet Epidemiol. 2012 Apr;36(3):214-24
pubmed: 22714935
Schizophr Res. 2013 Jul;147(2-3):375-82
pubmed: 23643328
Eur Psychiatry. 2016 Mar;33:45-53
pubmed: 26854986