Inositol phosphate kinases: Expanding the biological significance of the universal core of the protein kinase fold.


Journal

Advances in biological regulation
ISSN: 2212-4934
Titre abrégé: Adv Biol Regul
Pays: England
ID NLM: 101572336

Informations de publication

Date de publication:
01 2019
Historique:
received: 30 09 2018
revised: 23 10 2018
accepted: 26 10 2018
pubmed: 6 11 2018
medline: 5 3 2020
entrez: 6 11 2018
Statut: ppublish

Résumé

The protein kinase family is characterized by substantial conservation of architectural elements that are required for both ATP binding and phosphotransferase activity. Many of these structural features have also been identified in homologous enzymes that phosphorylate a variety of alternative, non-protein substrates. A comparative structural analysis of these different kinase sub-classes is a portal to a greater understanding of reaction mechanisms, enzyme regulation, inhibitor-development strategies, and superfamily-level evolutionary relationships. To serve such advances, we review structural elements of the protein kinase fold that are conserved in the subfamily of inositol phosphate kinases (InsPKs) that share a PxxxDxKxG catalytic signature: inositol 1,4,5-trisphosphate kinase (IP3K), inositol hexakisphosphate kinase (IP6K), and inositol polyphosphate multikinase (IPMK). We describe conservation of the fundamental two-lobe kinase architecture: an N-lobe constructed upon an anti-parallel β-strand scaffold, which is coupled to a largely helical C-lobe by a single, adenine-binding hinge. This equivalency also includes a G-loop that embraces the β/γ-phosphates of ATP, a transition-state stabilizing residue (Lys/His), and a Mg-positioning aspartate residue within a catalytic triad. Furthermore, we expand this list of conserved structural features to include some not previously identified in InsPKs: a 'gatekeeper' residue in the N-lobe, and an 'αF'-like helix in the C-lobe that anchors two structurally-stabilizing, hydrophobic spines, formed from non-consecutive residues that span the two lobes. We describe how this wide-ranging structural homology can be exploited to develop lead inhibitors of IP6K and IPMK, by using strategies similar to those that have generated ATP-competing inhibitors of protein-kinases. We provide several examples to illustrate how such an approach could benefit human health.

Identifiants

pubmed: 30392847
pii: S2212-4926(18)30148-9
doi: 10.1016/j.jbior.2018.10.006
pmc: PMC9364425
mid: NIHMS1828131
pii:
doi:

Substances chimiques

Inositol Phosphates 0
Protein Kinases EC 2.7.-
Phosphotransferases (Alcohol Group Acceptor) EC 2.7.1.-
inositol polyphosphate multikinase EC 2.7.1.-
Phosphotransferases (Phosphate Group Acceptor) EC 2.7.4.-
inositol hexakisphosphate kinase EC 2.7.4.21

Types de publication

Journal Article Research Support, N.I.H., Intramural Review

Langues

eng

Sous-ensembles de citation

IM

Pagination

118-127

Subventions

Organisme : Intramural NIH HHS
ID : Z01 ES080046
Pays : United States

Informations de copyright

Copyright © 2018. Published by Elsevier Ltd.

Références

J Cell Physiol. 2018 Mar;233(3):1897-1912
pubmed: 28542902
Cell. 1998 Sep 18;94(6):829-39
pubmed: 9753329
Sci Signal. 2011 Oct 18;4(195):re2
pubmed: 22009150
Adv Biol Regul. 2017 May;64:9-19
pubmed: 28342784
J Biol Chem. 2003 Mar 21;278(12):10613-8
pubmed: 12499371
Subcell Biochem. 2012;59:389-412
pubmed: 22374098
Mol Metab. 2016 Aug 21;5(10):903-917
pubmed: 27689003
J Mol Biol. 2002 Jul 19;320(4):855-81
pubmed: 12095261
Trends Biochem Sci. 2011 Feb;36(2):65-77
pubmed: 20971646
Curr Mol Med. 2004 May;4(3):277-90
pubmed: 15101685
Mol Cell. 2004 Sep 10;15(5):689-701
pubmed: 15350214
J Biol Chem. 2017 Nov 3;292(44):18192-18202
pubmed: 28882892
Mol Cell. 2000 Oct;6(4):909-19
pubmed: 11090628
J Biol Chem. 2017 Aug 18;292(33):13541-13550
pubmed: 28676499
PLoS One. 2017 Nov 29;12(11):e0188852
pubmed: 29186181
SLAS Discov. 2018 Oct;23(9):982-988
pubmed: 29842835
Nat Chem Biol. 2011 Nov 27;8(1):111-6
pubmed: 22119861
J Biol Chem. 2017 Jun 23;292(25):10534-10548
pubmed: 28450399
J Biol Chem. 2006 Dec 8;281(49):38109-16
pubmed: 17050532
Nat Rev Mol Cell Biol. 2001 May;2(5):327-38
pubmed: 11331907
Nat Struct Biol. 2002 Apr;9(4):273-7
pubmed: 11896404
Biol Rev Camb Philos Soc. 2018 May;93(2):1203-1227
pubmed: 29282838
Cell Mol Life Sci. 2006 Mar;63(5):552-64
pubmed: 16429326
Cell Chem Biol. 2016 May 19;23(5):608-617
pubmed: 27133314
J Biol Chem. 2013 Sep 13;288(37):26908-13
pubmed: 23884422
J Biol Chem. 2005 Oct 28;280(43):36372-9
pubmed: 16131491
Science. 1991 Jul 26;253(5018):407-14
pubmed: 1862342
J Cell Sci. 2001 Jun;114(Pt 12):2207-8
pubmed: 11493657
FEBS Lett. 2000 Feb 18;468(1):28-32
pubmed: 10683435
Biochemistry. 2005 Nov 8;44(44):14486-93
pubmed: 16262249
Biochem J. 1997 Aug 15;326 ( Pt 1):221-5
pubmed: 9337872
Nat Prod Rep. 2012 Mar;29(3):392-403
pubmed: 22231144
Cell Rep. 2014 Nov 20;9(4):1209-18
pubmed: 25456123
Nat Commun. 2014 Jun 24;5:4178
pubmed: 24956979
Bioorg Med Chem Lett. 2007 Jan 1;17(1):183-8
pubmed: 17045478
Biophys J. 2006 May 1;90(9):3120-33
pubmed: 16500959
Cell. 2010 Dec 10;143(6):1030-1030.e1
pubmed: 21145466
Mol Cell. 2004 Sep 10;15(5):703-11
pubmed: 15350215
Nature. 1999 Nov 18;402(6759):313-20
pubmed: 10580505
Proc Natl Acad Sci U S A. 2005 Sep 6;102(36):12783-8
pubmed: 16123124
Proc Natl Acad Sci U S A. 2011 Jan 25;108(4):1391-6
pubmed: 21220345
J Biol Chem. 2012 Oct 12;287(42):35360-35369
pubmed: 22896696
Science. 2000 Mar 17;287(5460):2026-9
pubmed: 10720331
J Biol Chem. 2001 Oct 19;276(42):39179-85
pubmed: 11502751
Mol Cells. 2017 May 31;40(5):315-321
pubmed: 28554203
Nat Struct Mol Biol. 2008 Oct;15(10):1109-18
pubmed: 18794843
Adv Biol Regul. 2017 Jan;63:98-106
pubmed: 27776974
Bioorg Med Chem. 1998 Aug;6(8):1219-26
pubmed: 9784863
Adv Biol Regul. 2018 Jan;67:74-83
pubmed: 28964726
J Biol Chem. 2002 Nov 15;277(46):43836-43
pubmed: 12223481
Cell Mol Life Sci. 2010 Jun;67(11):1755-78
pubmed: 20066467
PLoS One. 2016 Aug 12;11(8):e0161111
pubmed: 27517610
Science. 1991 Jul 26;253(5018):414-20
pubmed: 1862343
Biochemistry. 1989 Mar 7;28(5):2065-70
pubmed: 2497773
Curr Biol. 1999 Nov 18;9(22):1323-6
pubmed: 10574768
PLoS Comput Biol. 2005 Oct;1(5):e49
pubmed: 16244704
Nat Chem Biol. 2017 Sep 19;13(10):1053-1056
pubmed: 28926557
J Biol Chem. 1997 Jul 4;272(27):16946-54
pubmed: 9202006
Sci Signal. 2012 Jun 19;5(229):ra44
pubmed: 22715467
Biochem J. 2002 Sep 1;366(Pt 2):549-56
pubmed: 12027805

Auteurs

Stephen B Shears (SB)

Inositol Signaling Group, Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA. Electronic address: shears@niehs.nih.gov.

Huanchen Wang (H)

Inositol Signaling Group, Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA. Electronic address: Huanchen.wang@nih.gov.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH