Developmental influence of unconjugated hyperbilirubinemia and neurobehavioral disorders.


Journal

Pediatric research
ISSN: 1530-0447
Titre abrégé: Pediatr Res
Pays: United States
ID NLM: 0100714

Informations de publication

Date de publication:
01 2019
Historique:
received: 19 07 2018
accepted: 15 10 2018
revised: 10 10 2018
pubmed: 7 11 2018
medline: 3 4 2020
entrez: 7 11 2018
Statut: ppublish

Résumé

Bilirubin-induced brain injury in the neonatal period has detrimental effects on neurodevelopment that persist into childhood and adulthood, contributing to childhood developmental disorders. Unconjugated bilirubin is a potent antioxidant that may be useful for protecting against oxidative injuries, but it becomes a potent neurotoxin once it crosses the blood brain barrier. Because bilirubin toxicity involves a myriad of pathological mechanisms, can damage most types of brain cells, and affects brain circuits or loops that influence cognition, learning, behavior, sensory, and language, the clinical effects of bilirubin-induced neurotoxicity are likely to be manifold. One possible effect that several experts have identified is bilirubin-induced neurological dysfunction (subtle kernicterus). However, the underlying biological mechanisms or pathways by which subtle kernicterus could lead to developmental disorders has not been elucidated previously. Our aim in this review is to describe a spectrum of developmental disorders that may reflect subtle kernicterus and outline plausible biological mechanisms for this possible association. We review existing evidence that support or refute the association between unconjugated hyperbilirubinemia and developmental disorders, and limitations associated with these studies.

Identifiants

pubmed: 30397278
doi: 10.1038/s41390-018-0216-4
pii: 10.1038/s41390-018-0216-4
doi:

Types de publication

Journal Article Research Support, N.I.H., Extramural Review

Langues

eng

Sous-ensembles de citation

IM

Pagination

191-197

Subventions

Organisme : NICHD NIH HHS
ID : R21 HD078744
Pays : United States

Références

Calligaris, S. D. et al. Cytotoxicity is predicted by unbound and not total bilirubin concentration. Pediatr. Res. 62, 576–580 (2007).
pubmed: 18049372 doi: 10.1203/PDR.0b013e3181568c94
Brites, D. Bilirubin injury to neurons and glial cells: new players, novel targets, and newer insights. Semin. Perinatol. 35, 114–120 (2011).
pubmed: 21641483 doi: 10.1053/j.semperi.2011.02.004
Ahdab-Barmada, M. & Moossy, J. The neuropathology of kernicterus in the premature neonate: diagnostic problems. J. Neuropathol. Exp. Neurol. 43, 45–56 (1984).
pubmed: 6693927 doi: 10.1097/00005072-198401000-00004
Volpe, J. J. Neurology of the Newborn 5th edn, 619–651 (W B Saunders Company, Philadelphia, 2008).
Hyman, C. B. et al. CNS abnormalities after neonatal hemolytic disease or hyperbilirubinemia. A prospective study of 405 patients. Am. J. Dis. Child. 117, 395–405 (1969).
pubmed: 4975237 doi: 10.1001/archpedi.1969.02100030397002
Perlstein, M. The late clinical syndrome of posticteric encephalopathy. Pediatr. Clin. North Am. 7, 665–674 (1960).
doi: 10.1016/S0031-3955(16)30979-8
Johnson, L. & Bhutani, V. K. The clinical syndrome of bilirubin-induced neurologic dysfunction. Semin. Perinatol. 35, 101–113 (2011).
pubmed: 21641482 doi: 10.1053/j.semperi.2011.02.003
Shapiro, S. M. Definition of the clinical spectrum of kernicterus and bilirubin-induced neurologic dysfunction (BIND). J. Perinatol. 25, 54–59 (2005).
pubmed: 15578034 doi: 10.1038/sj.jp.7211157
Amin, S. B., Smith, T. & Wang, H. Is neonatal jaundice associated with autism spectrum disorders: a systematic review. J. Autism Dev. Disord. 41, 1455–1463 (2011).
pubmed: 22009628 pmcid: 4285414 doi: 10.1007/s10803-010-1169-6
Wusthoff, C. J. & Loe, I. M. Impact of bilirubin-induced neurologic dysfunction on neurodevelopmental outcomes. Semin. Fetal Neonatal Med. 20, 52–57 (2015).
pubmed: 25585889 pmcid: 4651619 doi: 10.1016/j.siny.2014.12.003
Koziol, L. F., Budding, D. E. & Chidekel, D. Hyperbilirubinemia: subcortical mechanisms of cognitive and behavioral dysfunction. Pediatr. Neurol. 48, 3–13 (2013).
pubmed: 23290014 doi: 10.1016/j.pediatrneurol.2012.06.019
Brites, D. & Fernandes, A. Bilirubin-induced neural impairment: a special focus on myelination, age-related windows of susceptibility and associated co-morbidities. Semin. Fetal Neonatal Med. 20, 14–19 (2015).
pubmed: 25534357 doi: 10.1016/j.siny.2014.12.002
Amin, S. B., Prinzing, D. & Myers, G. Hyperbilirubinemia and language delay in premature infants. Pediatrics 123, 327–331 (2009).
pubmed: 19117899 doi: 10.1542/peds.2007-3723
Jew, J. Y. & Sandquist, D. CNS changes in hyperbilirubinemia. Functional implications. Arch. Neurol. 36, 149–154 (1979).
pubmed: 571271 doi: 10.1001/archneur.1979.00500390067007
Kaufmann, W. E. & Moser, H. W. Dendritic anomalies in disorders associated with mental retardation. Cereb. Cortex. 10, 981–991 (2000).
pubmed: 11007549 doi: 10.1093/cercor/10.10.981
Brites, D. The evolving landscape of neurotoxicity by unconjugated bilirubin: role of glial cells and inflammation. Front. Pharmacol. 3, 88 (2012).
pubmed: 22661946 pmcid: 3361682 doi: 10.3389/fphar.2012.00088
Brites, D. et al. Biological risks for neurological abnormalities associated with hyperbilirubinemia. J. Perinatol. 29(Suppl 1), S8–13 (2009).
pubmed: 19177063 doi: 10.1038/jp.2008.214
Brito, M. A. et al. Bilirubin injury to neurons: contribution of oxidative stress and rescue by glycoursodeoxycholic acid. Neurotoxicology 29, 259–269 (2008).
pubmed: 18164405 doi: 10.1016/j.neuro.2007.11.002
Johnston, M. V. & Hoon, A. H. Jr. Possible mechanisms in infants for selective basal ganglia damage from asphyxia, kernicterus, or mitochondrial encephalopathies. J. Child Neurol. 15, 588–591 (2000).
pubmed: 11019789 doi: 10.1177/088307380001500904
Turkel, S. B. Autopsy findings associated with neonatal hyperbilirubinemia. Clin. Perinatol. 17, 381–396 (1990).
pubmed: 2196136 doi: 10.1016/S0095-5108(18)30574-8
Alexander, G. E., DeLong, M. R. & Strick, P. L. Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annu Rev. Neurosci. 9, 357–381 (1986).
pubmed: 3085570 doi: 10.1146/annurev.ne.09.030186.002041
Frank, M. J. Hold your horses: a dynamic computational role for the subthalamic nucleus in decision making. Neural Netw. 19, 1120–1136 (2006).
pubmed: 16945502 doi: 10.1016/j.neunet.2006.03.006
Aron, A. R. & Poldrack, R. A. Cortical and subcortical contributions to Stop signal response inhibition: role of the subthalamic nucleus. J. Neurosci. 26, 2424–2433 (2006).
pubmed: 16510720 doi: 10.1523/JNEUROSCI.4682-05.2006 pmcid: 6793670
Packard, M. G. & Knowlton, B. J. Learning and memory functions of the Basal Ganglia. Annu Rev. Neurosci. 25, 563–593 (2002).
pubmed: 12052921 doi: 10.1146/annurev.neuro.25.112701.142937
Bostan, A. C., Dum, R. P. & Strick, P. L. Cerebellar networks with the cerebral cortex and basal ganglia. Trends Cogn. Sci. 17, 241–254 (2013).
pubmed: 23579055 pmcid: 3645327 doi: 10.1016/j.tics.2013.03.003
Ullman, M. T. The declarative/procedural model of lexicon and grammar. J. Psycholinguist. Res. 30, 37–69 (2001).
pubmed: 11291183 doi: 10.1023/A:1005204207369
Frank, M. J., Loughry, B. & O’Reilly, R. C. Interactions between frontal cortex and basal ganglia in working memory: a computational model. Cogn. Affect Behav. Neurosci. 1, 137–160 (2001).
pubmed: 12467110 doi: 10.3758/CABN.1.2.137
McNab, F. & Klingberg, T. Prefrontal cortex and basal ganglia control access to working memory. Nat. Neurosci. 11, 103–107 (2008).
pubmed: 18066057 doi: 10.1038/nn2024
Geary, D. C. Mathematics and learning disabilities. J. Learn Disabil. 37, 4–15 (2004).
pubmed: 15493463 doi: 10.1177/00222194040370010201
Geary, D. C. Consequences, characteristics, and causes of mathematical learning disabilities and persistent low achievement in mathematics. J. Dev. Behav. Pediatr. 32, 250–263 (2011).
pubmed: 21285895 pmcid: 3131082 doi: 10.1097/DBP.0b013e318209edef
Geary, D. C., Hoard, M. K., Byrd-Craven, J., Nugent, L. & Numtee, C. Cognitive mechanisms underlying achievement deficits in children with mathematical learning disability. Child Dev. 78, 1343–1359 (2007).
pubmed: 17650142 pmcid: 4439199 doi: 10.1111/j.1467-8624.2007.01069.x
Stoodley, C. J. & Limperopoulos, C. Structure-function relationships in the developing cerebellum: evidence from early-life cerebellar injury and neurodevelopmental disorders. Semin. Fetal Neonatal Med. 21, 356–364 (2016).
pubmed: 27184461 pmcid: 5282860 doi: 10.1016/j.siny.2016.04.010
Stoodley, C. J. The cerebellum and neurodevelopmental disorders. Cerebellum 15, 34–37 (2016).
pubmed: 26298473 pmcid: 4811332 doi: 10.1007/s12311-015-0715-3
Steinlin, M. Cerebellar disorders in childhood: cognitive problems. Cerebellum 7, 607–610 (2008).
pubmed: 19057977 doi: 10.1007/s12311-008-0083-3
Stoodley, C. J. & Stein, J. F. Cerebellar function in developmental dyslexia. Cerebellum 12, 267–276 (2013).
pubmed: 22851215 doi: 10.1007/s12311-012-0407-1
Baillieux, H. et al. Developmental dyslexia and widespread activation across the cerebellar hemispheres. Brain Lang. 108, 122–132 (2009).
pubmed: 18986695 doi: 10.1016/j.bandl.2008.10.001
Krain, A. L. & Castellanos, F. X. Brain development and ADHD. Clin. Psychol. Rev. 26, 433–444 (2006).
pubmed: 16480802 doi: 10.1016/j.cpr.2006.01.005
Schmahmann, J. D. Disorders of the cerebellum: ataxia, dysmetria of thought, and the cerebellar cognitive affective syndrome. J. Neuropsychiatry Clin. Neurosci. 16, 367–378 (2004).
pubmed: 15377747 doi: 10.1176/jnp.16.3.367
Koziol, L. F. et al. Consensus paper: the cerebellum’s role in movement and cognition. Cerebellum 13, 151–177 (2014).
pubmed: 23996631 pmcid: 4089997 doi: 10.1007/s12311-013-0511-x
Bodranghien, F. et al. Consensus paper: revisiting the symptoms and signs of cerebellar syndrome. Cerebellum 15, 369–391 (2016).
pubmed: 26105056 pmcid: 5565264 doi: 10.1007/s12311-015-0687-3
Eichenbaum, H. A cortical-hippocampal system for declarative memory. Nat. Rev. Neurosci. 1, 41–50 (2000).
pubmed: 11252767 doi: 10.1038/35036213
Shapiro, M. Plasticity, hippocampal place cells, and cognitive maps. Arch. Neurol. 58, 874–881 (2001).
pubmed: 11405801 doi: 10.1001/archneur.58.6.874
Rose, S. A., Feldman, J. F., Jankowski, J. J. & Van Rossem, R. The structure of memory in infants and toddlers: an SEM study with full-terms and preterms. Dev. Sci. 14, 83–91 (2011).
pubmed: 21159090 doi: 10.1111/j.1467-7687.2010.00959.x
van Praag, H., Black, I. B. & Staubli, U. V. Neonatal vs. adult unilateral hippocampal lesions: differential alterations in contralateral hippocampal theta rhythm. Brain Res. 768, 233–241 (1997).
pubmed: 9369320 doi: 10.1016/S0006-8993(97)00647-1
Burgess, N., Maguire, E. A. & O’Keefe, J. The human hippocampus and spatial and episodic memory. Neuron 35, 625–641 (2002).
pubmed: 12194864 doi: 10.1016/S0896-6273(02)00830-9
Espy, K. A., Molfese, D. L., Molfese, V. J. & Modglin, A. Development of auditory event-related potentials in young children and relations to word-level reading abilities at age 8 years. Ann. Dyslexia 54, 9–38 (2004).
pubmed: 15765002 pmcid: 2729145 doi: 10.1007/s11881-004-0002-3
Fuess, V. L., Bento, R. F. & da Silveira, J. A. Delay in maturation of the auditory pathway and its relationship to language acquisition disorders. Ear Nose Throat J. 81, 706–710 (2002).
pubmed: 12405091 doi: 10.1177/014556130208101011
Moore, D. R. Postnatal development of the mammalian central auditory system and the neural consequences of auditory deprivation. Acta Otolaryngol. Suppl. 421, 19–30 (1985).
pubmed: 2994353 doi: 10.3109/00016488509121753
Amin, S. B. Clinical assessment of bilirubin-induced neurotoxicity in premature infants. Semin Perinatol. 28, 340–347 (2004).
pubmed: 15686265 doi: 10.1053/j.semperi.2004.09.005
Marlow, N., Wolke, D., Bracewell, M. A., Samara, M. & Group, E. P. S. Neurologic and developmental disability at six years of age after extremely preterm birth. N. Engl. J. Med. 352, 9–19 (2005).
pubmed: 15635108 doi: 10.1056/NEJMoa041367
Linsell, L., Malouf, R., Morris, J., Kurinczuk, J. J. & Marlow, N. Prognostic factors for poor cognitive development in children born very preterm or with very low birth weight: a systematic review. JAMA Pediatr. 169, 1162–1172 (2015).
pubmed: 26457641 pmcid: 5122448 doi: 10.1001/jamapediatrics.2015.2175
Bhutta, A. T., Cleves, M. A., Casey, P. H., Cradock, M. M. & Anand, K. J. Cognitive and behavioral outcomes of school-aged children who were born preterm: a meta-analysis. JAMA 288, 728–737 (2002).
pubmed: 12169077 doi: 10.1001/jama.288.6.728
Poulsen, G. et al. Gestational age and cognitive ability in early childhood: a population-based cohort study. Paediatr. Perinat. Epidemiol. 27, 371–379 (2013).
pubmed: 23772939 doi: 10.1111/ppe.12058
Johnson, S. Cognitive and behavioural outcomes following very preterm birth. Semin. Fetal Neonatal Med. 12, 363–373 (2007).
pubmed: 17625996 doi: 10.1016/j.siny.2007.05.004
Davis, D. W. Cognitive outcomes in school-age children born prematurely. Neonatal Netw. 22, 27–38 (2003).
pubmed: 12795506 doi: 10.1891/0730-0832.22.2.27
Amit, Y. & Brenner, T. Age-dependent sensitivity of cultured rat glial cells to bilirubin toxicity. Exp. Neurol. 121, 248–255 (1993).
pubmed: 8339775 doi: 10.1006/exnr.1993.1092
Scheidt, P. C., Bryla, D. A., Nelson, K. B., Hirtz, D. G. & Hoffman, H. J. Phototherapy for neonatal hyperbilirubinemia: six-year follow-up of the National Institute of Child Health and Human Development clinical trial. Pediatrics 85, 455–463 (1990).
pubmed: 2179848
Brown, A. K., Kim, M. H., Wu, P. Y. & Bryla, D. A. Efficacy of phototherapy in prevention and management of neonatal hyperbilirubinemia. Pediatrics 75(2 Pt 2), 393–400 (1985).
pubmed: 3881731 doi: 10.1542/peds.75.2.393
Scheidt, P. C. et al. Intelligence at six years in relation to neonatal bilirubin levels: follow-up of the National Institute of Child Health and Human Development Clinical Trial of Phototherapy. Pediatrics 87, 797–805 (1991).
pubmed: 2034482 doi: 10.1542/peds.87.6.797
Johnston, W. H. et al. Erythroblastosis fetalis and hyperbilirubinemia. A five-year follow-up with neurological, psychological, and audiological evaluation. Pediatrics 39, 88–92 (1967).
pubmed: 6066698 doi: 10.1542/peds.39.1.88
Vuchovich, D. M., Haimowitz, N., Bowers, N. D., Cosbey, J. & Hsia, D. Y. The influence of serum bilirubin levels upon the ultimate development of low birthweight infants. J. Ment. Defic. Res. 9, 51–60 (1965).
pubmed: 14293783
Stewart, R. R., Walker, W. & Savage, R. D. A developmental study of cognitive and personality characteristics associated with haemolytic disease of the newborn. Dev. Med. Child Neurol. 12, 16–26 (1970).
pubmed: 4985066 doi: 10.1111/j.1469-8749.1970.tb01854.x
Culley, P. E., Powell, J. E., Waterhouse, J. A. & Wood, B. S. Sequelae of neonatal jaundice. Arch. Dis. Child. 45, 712 (1970).
pubmed: 5529333 pmcid: 1647498 doi: 10.1136/adc.45.243.712-c
Ebbesen, F., Ehrenstein, V., Traeger, M. & Nielsen, G. L. Neonatal non-hemolytic hyperbilirubinemia: a prevalence study of adult neuropsychiatric disability and cognitive function in 463 male Danish conscripts. Arch. Dis. Child. 95, 583–587 (2010).
pubmed: 20551192 doi: 10.1136/adc.2009.159285
Rubin, R. A., Balow, B. & Fisch, R. O. Neonatal serum bilirubin levels related to cognitive development at ages 4 through 7 years. J. Pediatr. 94, 601–604 (1979).
pubmed: 430298 doi: 10.1016/S0022-3476(79)80022-0
Upadhyay, Y. A longitudinal study of full-term neonates with hyperbilirubinemia to four years of age. Johns. Hopkins Med J. 128, 273–277 (1971).
pubmed: 5556540
Bengtsson, B. & Verneholt, J. A follow-up study of hyperbilirubinaemia in healthy, full-term infants without iso-immunization. Acta Paediatr. Scand. 63, 70–80 (1974).
pubmed: 4830414 doi: 10.1111/j.1651-2227.1974.tb04351.x
Rosta, J. et al. Neonatal pathologic jaundice: seven to nine years follow-up. Acta Paediatr. Acad. Sci. Hung. 12, 317–321 (1971).
pubmed: 5169922
Michelsson, K., Lindahl, E., Helenius, M. & Parre, M. Five and nine year check-up of 314 children with neonatal hyperbilirubinemia. Early Child Dev. Care. 30, 167–180 (1988).
doi: 10.1080/0300443880300113
Gerver, J. M. & Day, R. Intelligence quotient of children who have recovered from erythroblastosis fetalis. J. Pediatr. 36, 342–348 (1950).
pubmed: 15405414 doi: 10.1016/S0022-3476(50)80104-X
Newman, T. B. et al. Outcomes among newborns with total serum bilirubin levels of 25 mg per deciliter or more. N. Engl. J. Med. 354, 1889–1900 (2006).
pubmed: 16672700 doi: 10.1056/NEJMoa054244
Naeye, R. L. Amniotic fluid infections, neonatal hyperbilirubinemia, and psychomotor impairment. Pediatrics 62, 497–503 (1978).
pubmed: 714581 doi: 10.1542/peds.62.4.497
Ozmert, E. et al. Long-term follow-up of indirect hyperbilirubinemia in full-term Turkish infants. Acta Paediatr. 85, 1440–1444 (1996).
pubmed: 9001655 doi: 10.1111/j.1651-2227.1996.tb13949.x
Kuzniewicz, M. & Newman, T. B. Interaction of hemolysis and hyperbilirubinemia on neurodevelopmental outcomes in the collaborative perinatal project. Pediatrics 123, 1045–1050 (2009).
pubmed: 19255038 doi: 10.1542/peds.2007-3413
Day, R. & Haines, M. S. Intelligence quotients of children recovered from erythroblastosis fetalis since the introduction of exchange transfusion. Pediatrics 13, 333–338 (1954).
pubmed: 13155082
Nilsen, S. T., Finne, P. H., Bergsjo, P. & Stamnes, O. Males with neonatal hyperbilirubinemia examined at 18 years of age. Acta Paediatr. Scand. 73, 176–180 (1984).
pubmed: 6741515 doi: 10.1111/j.1651-2227.1984.tb09924.x
Seidman, D. S. et al. Neonatal hyperbilirubinemia and physical and cognitive performance at 17 years of age. Pediatrics 88, 828–833 (1991).
pubmed: 1896294 doi: 10.1542/peds.88.4.828
Odell, G. B., Storey, G. N. & Rosenberg, L. A. Studies in kernicterus. 3. The saturation of serum proteins with bilirubin during neonatal life and its relationship to brain damage at five years. J. Pediatr. 76, 12–21 (1970).
pubmed: 5410148 doi: 10.1016/S0022-3476(70)80124-X
Hansen, R. L., Hughes, G. G. & Ahlfors, C. E. Neonatal bilirubin exposure and psychoeducational outcome. J. Dev. Behav. Pediatr. 12, 287–293 (1991).
pubmed: 1939683 doi: 10.1097/00004703-199110000-00001
Visser, S. N. et al. Trends in the parent-report of health care provider-diagnosed and medicated attention-deficit/hyperactivity disorder: United States, 2003-2011. J. Am. Acad. Child Adolesc. Psychiatry 53, 34–46 e2 (2014).
pubmed: 24342384 doi: 10.1016/j.jaac.2013.09.001
Subcommittee on Attention-Deficit/Hyperactivity Disorder et al. ADHD: clinical practice guideline for the diagnosis, evaluation, and treatment of attention-deficit/hyperactivity disorder in children and adolescents. Pediatrics 128, 1007–1022 (2011).
doi: 10.1542/peds.2011-2654
Aarnoudse-Moens, C. S., Weisglas-Kuperus, N., van Goudoever, J. B. & Oosterlaan, J. Meta-analysis of neurobehavioral outcomes in very preterm and/or very low birth weight children. Pediatrics 124, 717–728 (2009).
pubmed: 19651588 doi: 10.1542/peds.2008-2816
Lindstrom, K., Lindblad, F. & Hjern, A. Preterm birth and attention-deficit/hyperactivity disorder in schoolchildren. Pediatrics 127, 858–865 (2011).
doi: 10.1542/peds.2010-1279 pubmed: 21502231
Scott, M. N. et al. Behavior disorders in extremely preterm/extremely low birth weight children in kindergarten. J. Dev. Behav. Pediatr. 33, 202–213 (2012).
pubmed: 22245934 pmcid: 3319865 doi: 10.1097/DBP.0b013e3182475287
Wei, C. C. et al. Neonatal jaundice and increased risk of attention-deficit hyperactivity disorder: a population-based cohort study. J. Child Psychol. Psychiatry 56, 460–467 (2015).
pubmed: 25056274 doi: 10.1111/jcpp.12303
Stanford, J. A. et al. Hyperactivity in the Gunn rat model of neonatal jaundice: age-related attenuation and emergence of gait deficits. Pediatr. Res. 77, 434–439 (2015).
pubmed: 25518009 doi: 10.1038/pr.2014.199
Jangaard, K. A., Fell, D. B., Dodds, L. & Allen, A. C. Outcomes in a population of healthy term and near-term infants with serum bilirubin levels of >or=325 micromol/L (>or=19 mg/dL) who were born in Nova Scotia, Canada, between 1994 and 2000. Pediatrics 122, 119–124 (2008).
pubmed: 18595994 doi: 10.1542/peds.2007-0967
Kuzniewicz, M., Escobar, G. J. & Newman, T. B. No association between hyperbilirubinemia and attention-deficit disorder. Pediatrics 123, e367–e368 (2009).
pubmed: 19171601 doi: 10.1542/peds.2008-2803
Johnson, S. et al. Academic attainment and special educational needs in extremely preterm children at 11 years of age: the EPICure study. Arch. Dis. Child Fetal Neonatal Ed. 94, F283–F289 (2009).
pubmed: 19282336 doi: 10.1136/adc.2008.152793
Taylor, H. G., Espy, K. A. & Anderson, P. J. Mathematics deficiencies in children with very low birth weight or very preterm birth. Dev. Disabil. Res Rev. 15, 52–59 (2009).
pubmed: 19213016 doi: 10.1002/ddrr.51
Kovachy, V. N., Adams, J. N., Tamaresis, J. S. & Feldman, H. M. Reading abilities in school-aged preterm children: a review and meta-analysis. Dev. Med. Child Neurol. 57, 410–419 (2015).
pubmed: 25516105 doi: 10.1111/dmcn.12652
Grunau, R. E., Whitfield, M. F. & Davis, C. Pattern of learning disabilities in children with extremely low birth weight and broadly average intelligence. Arch. Pediatr. Adolesc. Med. 156, 615–620 (2002).
pubmed: 12038896 doi: 10.1001/archpedi.156.6.615
Hokkanen, L., Launes, J. & Michelsson, K. Adult neurobehavioral outcome of hyperbilirubinemia in full term neonates-a 30 year prospective follow-up study. PeerJ 2, e294 (2014).
pubmed: 24688870 pmcid: 3961148 doi: 10.7717/peerj.294
Croen, L. A., Yoshida, C. K., Odouli, R. & Newman, T. B. Neonatal hyperbilirubinemia and risk of autism spectrum disorders. Pediatrics 115, e135–e138 (2005).
pubmed: 15687420 doi: 10.1542/peds.2004-1870
Maimburg, R. D., Bech, B. H., Vaeth, M., Moller-Madsen, B. & Olsen, J. Neonatal jaundice, autism, and other disorders of psychological development. Pediatrics 126, 872–878 (2010).
pubmed: 20937652 doi: 10.1542/peds.2010-0052
Maimburg, R. D. et al. Neonatal jaundice: a risk factor for infantile autism? Paediatr. Perinat. Epidemiol. 22, 562–568 (2008).
pubmed: 19000294 doi: 10.1111/j.1365-3016.2008.00973.x
Sugie, Y., Sugie, H., Fukuda, T. & Ito, M. Neonatal factors in infants with autistic disorder and typically developing infants. Autism 9, 487–494 (2005).
pubmed: 16287701 doi: 10.1177/1362361305057877
Froehlich-Santino, W. et al. Prenatal and perinatal risk factors in a twin study of autism spectrum disorders. J. Psychiatr. Res. 54, 100–108 (2014).
pubmed: 24726638 pmcid: 4072527 doi: 10.1016/j.jpsychires.2014.03.019
Lozada, L. E. et al. Association of autism spectrum disorders with neonatal hyperbilirubinemia. Glob. Pediatr. Health 2, 2333794X15596518 (2015).
pubmed: 27335973 pmcid: 4784634
Duan, G., Yao, M., Ma, Y. & Zhang, W. Perinatal and background risk factors for childhood autism in central China. Psychiatry Res. 220, 410–417 (2014).
pubmed: 25085792 doi: 10.1016/j.psychres.2014.05.057
Wennberg, R. P., Ahlfors, C. E., Bhutani, V. K., Johnson, L. H. & Shapiro, S. M. Toward understanding kernicterus: a challenge to improve the management of jaundiced newborns. Pediatrics 117, 474–485 (2006).
pubmed: 16452368 doi: 10.1542/peds.2005-0395
Amin, S. B. & Wang, H. Bilirubin albumin binding and unbound unconjugated hyperbilirubinemia in premature infants. J. Pediatr. 192, 47–52 (2018).
pubmed: 29132818 doi: 10.1016/j.jpeds.2017.09.039
Woods, P. L., Rieger, I., Wocadlo, C. & Gordon, A. Predicting the outcome of specific language impairment at five years of age through early developmental assessment in preterm infants. Early Hum. Dev. 90, 613–619 (2014).
pubmed: 25239156 doi: 10.1016/j.earlhumdev.2014.07.010
Barre, N., Morgan, A., Doyle, L. W. & Anderson, P. J. Language abilities in children who were very preterm and/or very low birth weight: a meta-analysis. J. Pediatr. 158, 766–774.e1 (2011).
pubmed: 21146182 doi: 10.1016/j.jpeds.2010.10.032
van Noort-van der Spek, I. L., Franken, M. C. & Weisglas-Kuperus, N. Language functions in preterm-born children: a systematic review and meta-analysis. Pediatrics 129, 745–754 (2012).
pubmed: 22430458 doi: 10.1542/peds.2011-1728
Chisin, R., Perlman, M. & Sohmer, H. Cochlear and brain stem responses in hearing loss following neonatal hyperbilirubinemia. Ann. Otol. Rhinol. Laryngol. 88(3 Pt 1), 352–357 (1979).
pubmed: 464527 doi: 10.1177/000348947908800310
Kaga, K., Kitazumi, E. & Kodama, K. Auditory brain stem responses of kernicterus infants. Int. J. Pediatr. Otorhinolaryngol. 1, 255–264 (1979).
pubmed: 552383 doi: 10.1016/0165-5876(79)90020-X
Saluja, S., Agarwal, A., Kler, N. & Amin, S. Auditory neuropathy spectrum disorder in late preterm and term infants with severe jaundice. Int. J. Pediatr. Otorhinolaryngol. 74, 1292–1297 (2010).
pubmed: 20832127 pmcid: 2962441 doi: 10.1016/j.ijporl.2010.08.007
Lenhardt, M. L., McArtor, R. & Bryant, B. Effects of neonatal hyperbilirubinemia on the brainstem electric response. J. Pediatr. 104, 281–284 (1984).
pubmed: 6694027 doi: 10.1016/S0022-3476(84)81013-6
Akman, I. et al. Auditory neuropathy in hyperbilirubinemia: is there a correlation between serum bilirubin, neuron-specific enolase levels and auditory neuropathy? Int J. Audiol. 43, 516–522 (2004).
pubmed: 15726842 doi: 10.1080/14992020400050066
Ahlfors, C. E., Amin, S. B. & Parker, A. E. Unbound bilirubin predicts abnormal automated auditory brainstem response in a diverse newborn population. J. Perinatol. 29, 305–309 (2009).
pubmed: 19242487 pmcid: 4285409 doi: 10.1038/jp.2008.199
Amin, S. B. et al. Bilirubin and serial auditory brainstem responses in premature infants. Pediatrics 107, 664–670 (2001).
pubmed: 11335741 doi: 10.1542/peds.107.4.664
Nakamura, H. et al. Auditory nerve and brainstem responses in newborn infants with hyperbilirubinemia. Pediatrics 75, 703–708 (1985).
pubmed: 3982902 doi: 10.1542/peds.75.4.703
Funato, M., Tamai, H., Shimada, S. & Nakamura, H. Vigintiphobia, unbound bilirubin, and auditory brainstem responses. Pediatrics 93, 50–53 (1994).
pubmed: 8265323 doi: 10.1542/peds.93.1.50
Amin, S. B., et al. Chronic auditory toxicity in late preterm and term infants with significant hyperbilirubinemia. Pediatrics. 140, e20164009 (2017).
Amin, S. B. et al. Auditory toxicity in late preterm and term neonates with severe jaundice. Dev. Med. Child Neurol. 59, 297–303 (2017).
pubmed: 27718221 doi: 10.1111/dmcn.13284
Amin, S. B., Wang, H., Laroia, N. & Orlando, M. Unbound bilirubin and auditory neuropathy spectrum disorder in late preterm and term infants with severe jaundice. J. Pediatr. 173, 84–89 (2016).
pubmed: 26952116 pmcid: 4884491 doi: 10.1016/j.jpeds.2016.02.024
Abrams, D. A., Nicol, T., Zecker, S. G. & Kraus, N. Auditory brainstem timing predicts cerebral asymmetry for speech. J. Neurosci. 26, 11131–11137 (2006).
pubmed: 17065453 doi: 10.1523/JNEUROSCI.2744-06.2006 pmcid: 6674666
Mason, S. M. & Mellor, D. H. Brain-stem, middle latency and late cortical evoked potentials in children with speech and language disorders. Electroencephalogr. Clin. Neurophysiol. 59, 297–309 (1984).
pubmed: 6203719 doi: 10.1016/0168-5597(84)90047-9
Kral, A., Tillein, J., Heid, S., Hartmann, R. & Klinke, R. Postnatal cortical development in congenital auditory deprivation. Cereb. Cortex 15, 552–562 (2005).
pubmed: 15319310 doi: 10.1093/cercor/bhh156
Tallal, P., Stark, R. E. & Mellits, D. The relationship between auditory temporal analysis and receptive language development: evidence from studies of developmental language disorder. Neuropsychologia 23, 527–534 (1985).
pubmed: 2412182 doi: 10.1016/0028-3932(85)90006-5
Yoshinaga-Itano, C. Benefits of early intervention for children with hearing loss. Otolaryngol. Clin. North Am. 32, 1089–1102 (1999).
pubmed: 10523454 doi: 10.1016/S0030-6665(05)70196-1
Amin, S. B., Vogler-Elias, D., Orlando, M. & Wang, H. Auditory neural myelination is associated with early childhood language development in premature infants. Early Hum. Dev. 90, 673–678 (2014).
pubmed: 25194836 pmcid: 4301398 doi: 10.1016/j.earlhumdev.2014.07.014
Amin, S., Orlando, M. & Wang, H. Unbound bilirubin and auditory neuropathy spectrum disorder in premature infants. Pediatric Academic Society Meeting, Boston, 2012. p. 752525.
Amin, S. B. et al. Auditory toxicity in late preterm and term neonates with severe jaundice. Dev. Med. Child Neurol. 59, 297–303 (2016).
pubmed: 27718221 pmcid: 5288130 doi: 10.1111/dmcn.13284
Amin, S. B. & Wang, H. Unbound unconjugated hyperbilirubinemia is associated with central apnea in premature infants. J. Pediatr. 166, 571–575 (2015).
pubmed: 25596965 pmcid: 4344891 doi: 10.1016/j.jpeds.2014.12.003

Auteurs

Sanjiv B Amin (SB)

Division of Neonatology, Department of Pediatrics, University of Rochester, Rochester, NY, USA. Sanjiv_amin@urmc.rochester.edu.

Tristram Smith (T)

Division of Developmental and Behavioral Pediatrics, University of Rochester, Rochester, NY, USA.

Geralyn Timler (G)

Communication Sciences and Disorders, James Madison University, Harrisonburg, VA, USA.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH