Developmental influence of unconjugated hyperbilirubinemia and neurobehavioral disorders.
Journal
Pediatric research
ISSN: 1530-0447
Titre abrégé: Pediatr Res
Pays: United States
ID NLM: 0100714
Informations de publication
Date de publication:
01 2019
01 2019
Historique:
received:
19
07
2018
accepted:
15
10
2018
revised:
10
10
2018
pubmed:
7
11
2018
medline:
3
4
2020
entrez:
7
11
2018
Statut:
ppublish
Résumé
Bilirubin-induced brain injury in the neonatal period has detrimental effects on neurodevelopment that persist into childhood and adulthood, contributing to childhood developmental disorders. Unconjugated bilirubin is a potent antioxidant that may be useful for protecting against oxidative injuries, but it becomes a potent neurotoxin once it crosses the blood brain barrier. Because bilirubin toxicity involves a myriad of pathological mechanisms, can damage most types of brain cells, and affects brain circuits or loops that influence cognition, learning, behavior, sensory, and language, the clinical effects of bilirubin-induced neurotoxicity are likely to be manifold. One possible effect that several experts have identified is bilirubin-induced neurological dysfunction (subtle kernicterus). However, the underlying biological mechanisms or pathways by which subtle kernicterus could lead to developmental disorders has not been elucidated previously. Our aim in this review is to describe a spectrum of developmental disorders that may reflect subtle kernicterus and outline plausible biological mechanisms for this possible association. We review existing evidence that support or refute the association between unconjugated hyperbilirubinemia and developmental disorders, and limitations associated with these studies.
Identifiants
pubmed: 30397278
doi: 10.1038/s41390-018-0216-4
pii: 10.1038/s41390-018-0216-4
doi:
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Review
Langues
eng
Sous-ensembles de citation
IM
Pagination
191-197Subventions
Organisme : NICHD NIH HHS
ID : R21 HD078744
Pays : United States
Références
Calligaris, S. D. et al. Cytotoxicity is predicted by unbound and not total bilirubin concentration. Pediatr. Res. 62, 576–580 (2007).
pubmed: 18049372
doi: 10.1203/PDR.0b013e3181568c94
Brites, D. Bilirubin injury to neurons and glial cells: new players, novel targets, and newer insights. Semin. Perinatol. 35, 114–120 (2011).
pubmed: 21641483
doi: 10.1053/j.semperi.2011.02.004
Ahdab-Barmada, M. & Moossy, J. The neuropathology of kernicterus in the premature neonate: diagnostic problems. J. Neuropathol. Exp. Neurol. 43, 45–56 (1984).
pubmed: 6693927
doi: 10.1097/00005072-198401000-00004
Volpe, J. J. Neurology of the Newborn 5th edn, 619–651 (W B Saunders Company, Philadelphia, 2008).
Hyman, C. B. et al. CNS abnormalities after neonatal hemolytic disease or hyperbilirubinemia. A prospective study of 405 patients. Am. J. Dis. Child. 117, 395–405 (1969).
pubmed: 4975237
doi: 10.1001/archpedi.1969.02100030397002
Perlstein, M. The late clinical syndrome of posticteric encephalopathy. Pediatr. Clin. North Am. 7, 665–674 (1960).
doi: 10.1016/S0031-3955(16)30979-8
Johnson, L. & Bhutani, V. K. The clinical syndrome of bilirubin-induced neurologic dysfunction. Semin. Perinatol. 35, 101–113 (2011).
pubmed: 21641482
doi: 10.1053/j.semperi.2011.02.003
Shapiro, S. M. Definition of the clinical spectrum of kernicterus and bilirubin-induced neurologic dysfunction (BIND). J. Perinatol. 25, 54–59 (2005).
pubmed: 15578034
doi: 10.1038/sj.jp.7211157
Amin, S. B., Smith, T. & Wang, H. Is neonatal jaundice associated with autism spectrum disorders: a systematic review. J. Autism Dev. Disord. 41, 1455–1463 (2011).
pubmed: 22009628
pmcid: 4285414
doi: 10.1007/s10803-010-1169-6
Wusthoff, C. J. & Loe, I. M. Impact of bilirubin-induced neurologic dysfunction on neurodevelopmental outcomes. Semin. Fetal Neonatal Med. 20, 52–57 (2015).
pubmed: 25585889
pmcid: 4651619
doi: 10.1016/j.siny.2014.12.003
Koziol, L. F., Budding, D. E. & Chidekel, D. Hyperbilirubinemia: subcortical mechanisms of cognitive and behavioral dysfunction. Pediatr. Neurol. 48, 3–13 (2013).
pubmed: 23290014
doi: 10.1016/j.pediatrneurol.2012.06.019
Brites, D. & Fernandes, A. Bilirubin-induced neural impairment: a special focus on myelination, age-related windows of susceptibility and associated co-morbidities. Semin. Fetal Neonatal Med. 20, 14–19 (2015).
pubmed: 25534357
doi: 10.1016/j.siny.2014.12.002
Amin, S. B., Prinzing, D. & Myers, G. Hyperbilirubinemia and language delay in premature infants. Pediatrics 123, 327–331 (2009).
pubmed: 19117899
doi: 10.1542/peds.2007-3723
Jew, J. Y. & Sandquist, D. CNS changes in hyperbilirubinemia. Functional implications. Arch. Neurol. 36, 149–154 (1979).
pubmed: 571271
doi: 10.1001/archneur.1979.00500390067007
Kaufmann, W. E. & Moser, H. W. Dendritic anomalies in disorders associated with mental retardation. Cereb. Cortex. 10, 981–991 (2000).
pubmed: 11007549
doi: 10.1093/cercor/10.10.981
Brites, D. The evolving landscape of neurotoxicity by unconjugated bilirubin: role of glial cells and inflammation. Front. Pharmacol. 3, 88 (2012).
pubmed: 22661946
pmcid: 3361682
doi: 10.3389/fphar.2012.00088
Brites, D. et al. Biological risks for neurological abnormalities associated with hyperbilirubinemia. J. Perinatol. 29(Suppl 1), S8–13 (2009).
pubmed: 19177063
doi: 10.1038/jp.2008.214
Brito, M. A. et al. Bilirubin injury to neurons: contribution of oxidative stress and rescue by glycoursodeoxycholic acid. Neurotoxicology 29, 259–269 (2008).
pubmed: 18164405
doi: 10.1016/j.neuro.2007.11.002
Johnston, M. V. & Hoon, A. H. Jr. Possible mechanisms in infants for selective basal ganglia damage from asphyxia, kernicterus, or mitochondrial encephalopathies. J. Child Neurol. 15, 588–591 (2000).
pubmed: 11019789
doi: 10.1177/088307380001500904
Turkel, S. B. Autopsy findings associated with neonatal hyperbilirubinemia. Clin. Perinatol. 17, 381–396 (1990).
pubmed: 2196136
doi: 10.1016/S0095-5108(18)30574-8
Alexander, G. E., DeLong, M. R. & Strick, P. L. Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annu Rev. Neurosci. 9, 357–381 (1986).
pubmed: 3085570
doi: 10.1146/annurev.ne.09.030186.002041
Frank, M. J. Hold your horses: a dynamic computational role for the subthalamic nucleus in decision making. Neural Netw. 19, 1120–1136 (2006).
pubmed: 16945502
doi: 10.1016/j.neunet.2006.03.006
Aron, A. R. & Poldrack, R. A. Cortical and subcortical contributions to Stop signal response inhibition: role of the subthalamic nucleus. J. Neurosci. 26, 2424–2433 (2006).
pubmed: 16510720
doi: 10.1523/JNEUROSCI.4682-05.2006
pmcid: 6793670
Packard, M. G. & Knowlton, B. J. Learning and memory functions of the Basal Ganglia. Annu Rev. Neurosci. 25, 563–593 (2002).
pubmed: 12052921
doi: 10.1146/annurev.neuro.25.112701.142937
Bostan, A. C., Dum, R. P. & Strick, P. L. Cerebellar networks with the cerebral cortex and basal ganglia. Trends Cogn. Sci. 17, 241–254 (2013).
pubmed: 23579055
pmcid: 3645327
doi: 10.1016/j.tics.2013.03.003
Ullman, M. T. The declarative/procedural model of lexicon and grammar. J. Psycholinguist. Res. 30, 37–69 (2001).
pubmed: 11291183
doi: 10.1023/A:1005204207369
Frank, M. J., Loughry, B. & O’Reilly, R. C. Interactions between frontal cortex and basal ganglia in working memory: a computational model. Cogn. Affect Behav. Neurosci. 1, 137–160 (2001).
pubmed: 12467110
doi: 10.3758/CABN.1.2.137
McNab, F. & Klingberg, T. Prefrontal cortex and basal ganglia control access to working memory. Nat. Neurosci. 11, 103–107 (2008).
pubmed: 18066057
doi: 10.1038/nn2024
Geary, D. C. Mathematics and learning disabilities. J. Learn Disabil. 37, 4–15 (2004).
pubmed: 15493463
doi: 10.1177/00222194040370010201
Geary, D. C. Consequences, characteristics, and causes of mathematical learning disabilities and persistent low achievement in mathematics. J. Dev. Behav. Pediatr. 32, 250–263 (2011).
pubmed: 21285895
pmcid: 3131082
doi: 10.1097/DBP.0b013e318209edef
Geary, D. C., Hoard, M. K., Byrd-Craven, J., Nugent, L. & Numtee, C. Cognitive mechanisms underlying achievement deficits in children with mathematical learning disability. Child Dev. 78, 1343–1359 (2007).
pubmed: 17650142
pmcid: 4439199
doi: 10.1111/j.1467-8624.2007.01069.x
Stoodley, C. J. & Limperopoulos, C. Structure-function relationships in the developing cerebellum: evidence from early-life cerebellar injury and neurodevelopmental disorders. Semin. Fetal Neonatal Med. 21, 356–364 (2016).
pubmed: 27184461
pmcid: 5282860
doi: 10.1016/j.siny.2016.04.010
Stoodley, C. J. The cerebellum and neurodevelopmental disorders. Cerebellum 15, 34–37 (2016).
pubmed: 26298473
pmcid: 4811332
doi: 10.1007/s12311-015-0715-3
Steinlin, M. Cerebellar disorders in childhood: cognitive problems. Cerebellum 7, 607–610 (2008).
pubmed: 19057977
doi: 10.1007/s12311-008-0083-3
Stoodley, C. J. & Stein, J. F. Cerebellar function in developmental dyslexia. Cerebellum 12, 267–276 (2013).
pubmed: 22851215
doi: 10.1007/s12311-012-0407-1
Baillieux, H. et al. Developmental dyslexia and widespread activation across the cerebellar hemispheres. Brain Lang. 108, 122–132 (2009).
pubmed: 18986695
doi: 10.1016/j.bandl.2008.10.001
Krain, A. L. & Castellanos, F. X. Brain development and ADHD. Clin. Psychol. Rev. 26, 433–444 (2006).
pubmed: 16480802
doi: 10.1016/j.cpr.2006.01.005
Schmahmann, J. D. Disorders of the cerebellum: ataxia, dysmetria of thought, and the cerebellar cognitive affective syndrome. J. Neuropsychiatry Clin. Neurosci. 16, 367–378 (2004).
pubmed: 15377747
doi: 10.1176/jnp.16.3.367
Koziol, L. F. et al. Consensus paper: the cerebellum’s role in movement and cognition. Cerebellum 13, 151–177 (2014).
pubmed: 23996631
pmcid: 4089997
doi: 10.1007/s12311-013-0511-x
Bodranghien, F. et al. Consensus paper: revisiting the symptoms and signs of cerebellar syndrome. Cerebellum 15, 369–391 (2016).
pubmed: 26105056
pmcid: 5565264
doi: 10.1007/s12311-015-0687-3
Eichenbaum, H. A cortical-hippocampal system for declarative memory. Nat. Rev. Neurosci. 1, 41–50 (2000).
pubmed: 11252767
doi: 10.1038/35036213
Shapiro, M. Plasticity, hippocampal place cells, and cognitive maps. Arch. Neurol. 58, 874–881 (2001).
pubmed: 11405801
doi: 10.1001/archneur.58.6.874
Rose, S. A., Feldman, J. F., Jankowski, J. J. & Van Rossem, R. The structure of memory in infants and toddlers: an SEM study with full-terms and preterms. Dev. Sci. 14, 83–91 (2011).
pubmed: 21159090
doi: 10.1111/j.1467-7687.2010.00959.x
van Praag, H., Black, I. B. & Staubli, U. V. Neonatal vs. adult unilateral hippocampal lesions: differential alterations in contralateral hippocampal theta rhythm. Brain Res. 768, 233–241 (1997).
pubmed: 9369320
doi: 10.1016/S0006-8993(97)00647-1
Burgess, N., Maguire, E. A. & O’Keefe, J. The human hippocampus and spatial and episodic memory. Neuron 35, 625–641 (2002).
pubmed: 12194864
doi: 10.1016/S0896-6273(02)00830-9
Espy, K. A., Molfese, D. L., Molfese, V. J. & Modglin, A. Development of auditory event-related potentials in young children and relations to word-level reading abilities at age 8 years. Ann. Dyslexia 54, 9–38 (2004).
pubmed: 15765002
pmcid: 2729145
doi: 10.1007/s11881-004-0002-3
Fuess, V. L., Bento, R. F. & da Silveira, J. A. Delay in maturation of the auditory pathway and its relationship to language acquisition disorders. Ear Nose Throat J. 81, 706–710 (2002).
pubmed: 12405091
doi: 10.1177/014556130208101011
Moore, D. R. Postnatal development of the mammalian central auditory system and the neural consequences of auditory deprivation. Acta Otolaryngol. Suppl. 421, 19–30 (1985).
pubmed: 2994353
doi: 10.3109/00016488509121753
Amin, S. B. Clinical assessment of bilirubin-induced neurotoxicity in premature infants. Semin Perinatol. 28, 340–347 (2004).
pubmed: 15686265
doi: 10.1053/j.semperi.2004.09.005
Marlow, N., Wolke, D., Bracewell, M. A., Samara, M. & Group, E. P. S. Neurologic and developmental disability at six years of age after extremely preterm birth. N. Engl. J. Med. 352, 9–19 (2005).
pubmed: 15635108
doi: 10.1056/NEJMoa041367
Linsell, L., Malouf, R., Morris, J., Kurinczuk, J. J. & Marlow, N. Prognostic factors for poor cognitive development in children born very preterm or with very low birth weight: a systematic review. JAMA Pediatr. 169, 1162–1172 (2015).
pubmed: 26457641
pmcid: 5122448
doi: 10.1001/jamapediatrics.2015.2175
Bhutta, A. T., Cleves, M. A., Casey, P. H., Cradock, M. M. & Anand, K. J. Cognitive and behavioral outcomes of school-aged children who were born preterm: a meta-analysis. JAMA 288, 728–737 (2002).
pubmed: 12169077
doi: 10.1001/jama.288.6.728
Poulsen, G. et al. Gestational age and cognitive ability in early childhood: a population-based cohort study. Paediatr. Perinat. Epidemiol. 27, 371–379 (2013).
pubmed: 23772939
doi: 10.1111/ppe.12058
Johnson, S. Cognitive and behavioural outcomes following very preterm birth. Semin. Fetal Neonatal Med. 12, 363–373 (2007).
pubmed: 17625996
doi: 10.1016/j.siny.2007.05.004
Davis, D. W. Cognitive outcomes in school-age children born prematurely. Neonatal Netw. 22, 27–38 (2003).
pubmed: 12795506
doi: 10.1891/0730-0832.22.2.27
Amit, Y. & Brenner, T. Age-dependent sensitivity of cultured rat glial cells to bilirubin toxicity. Exp. Neurol. 121, 248–255 (1993).
pubmed: 8339775
doi: 10.1006/exnr.1993.1092
Scheidt, P. C., Bryla, D. A., Nelson, K. B., Hirtz, D. G. & Hoffman, H. J. Phototherapy for neonatal hyperbilirubinemia: six-year follow-up of the National Institute of Child Health and Human Development clinical trial. Pediatrics 85, 455–463 (1990).
pubmed: 2179848
Brown, A. K., Kim, M. H., Wu, P. Y. & Bryla, D. A. Efficacy of phototherapy in prevention and management of neonatal hyperbilirubinemia. Pediatrics 75(2 Pt 2), 393–400 (1985).
pubmed: 3881731
doi: 10.1542/peds.75.2.393
Scheidt, P. C. et al. Intelligence at six years in relation to neonatal bilirubin levels: follow-up of the National Institute of Child Health and Human Development Clinical Trial of Phototherapy. Pediatrics 87, 797–805 (1991).
pubmed: 2034482
doi: 10.1542/peds.87.6.797
Johnston, W. H. et al. Erythroblastosis fetalis and hyperbilirubinemia. A five-year follow-up with neurological, psychological, and audiological evaluation. Pediatrics 39, 88–92 (1967).
pubmed: 6066698
doi: 10.1542/peds.39.1.88
Vuchovich, D. M., Haimowitz, N., Bowers, N. D., Cosbey, J. & Hsia, D. Y. The influence of serum bilirubin levels upon the ultimate development of low birthweight infants. J. Ment. Defic. Res. 9, 51–60 (1965).
pubmed: 14293783
Stewart, R. R., Walker, W. & Savage, R. D. A developmental study of cognitive and personality characteristics associated with haemolytic disease of the newborn. Dev. Med. Child Neurol. 12, 16–26 (1970).
pubmed: 4985066
doi: 10.1111/j.1469-8749.1970.tb01854.x
Culley, P. E., Powell, J. E., Waterhouse, J. A. & Wood, B. S. Sequelae of neonatal jaundice. Arch. Dis. Child. 45, 712 (1970).
pubmed: 5529333
pmcid: 1647498
doi: 10.1136/adc.45.243.712-c
Ebbesen, F., Ehrenstein, V., Traeger, M. & Nielsen, G. L. Neonatal non-hemolytic hyperbilirubinemia: a prevalence study of adult neuropsychiatric disability and cognitive function in 463 male Danish conscripts. Arch. Dis. Child. 95, 583–587 (2010).
pubmed: 20551192
doi: 10.1136/adc.2009.159285
Rubin, R. A., Balow, B. & Fisch, R. O. Neonatal serum bilirubin levels related to cognitive development at ages 4 through 7 years. J. Pediatr. 94, 601–604 (1979).
pubmed: 430298
doi: 10.1016/S0022-3476(79)80022-0
Upadhyay, Y. A longitudinal study of full-term neonates with hyperbilirubinemia to four years of age. Johns. Hopkins Med J. 128, 273–277 (1971).
pubmed: 5556540
Bengtsson, B. & Verneholt, J. A follow-up study of hyperbilirubinaemia in healthy, full-term infants without iso-immunization. Acta Paediatr. Scand. 63, 70–80 (1974).
pubmed: 4830414
doi: 10.1111/j.1651-2227.1974.tb04351.x
Rosta, J. et al. Neonatal pathologic jaundice: seven to nine years follow-up. Acta Paediatr. Acad. Sci. Hung. 12, 317–321 (1971).
pubmed: 5169922
Michelsson, K., Lindahl, E., Helenius, M. & Parre, M. Five and nine year check-up of 314 children with neonatal hyperbilirubinemia. Early Child Dev. Care. 30, 167–180 (1988).
doi: 10.1080/0300443880300113
Gerver, J. M. & Day, R. Intelligence quotient of children who have recovered from erythroblastosis fetalis. J. Pediatr. 36, 342–348 (1950).
pubmed: 15405414
doi: 10.1016/S0022-3476(50)80104-X
Newman, T. B. et al. Outcomes among newborns with total serum bilirubin levels of 25 mg per deciliter or more. N. Engl. J. Med. 354, 1889–1900 (2006).
pubmed: 16672700
doi: 10.1056/NEJMoa054244
Naeye, R. L. Amniotic fluid infections, neonatal hyperbilirubinemia, and psychomotor impairment. Pediatrics 62, 497–503 (1978).
pubmed: 714581
doi: 10.1542/peds.62.4.497
Ozmert, E. et al. Long-term follow-up of indirect hyperbilirubinemia in full-term Turkish infants. Acta Paediatr. 85, 1440–1444 (1996).
pubmed: 9001655
doi: 10.1111/j.1651-2227.1996.tb13949.x
Kuzniewicz, M. & Newman, T. B. Interaction of hemolysis and hyperbilirubinemia on neurodevelopmental outcomes in the collaborative perinatal project. Pediatrics 123, 1045–1050 (2009).
pubmed: 19255038
doi: 10.1542/peds.2007-3413
Day, R. & Haines, M. S. Intelligence quotients of children recovered from erythroblastosis fetalis since the introduction of exchange transfusion. Pediatrics 13, 333–338 (1954).
pubmed: 13155082
Nilsen, S. T., Finne, P. H., Bergsjo, P. & Stamnes, O. Males with neonatal hyperbilirubinemia examined at 18 years of age. Acta Paediatr. Scand. 73, 176–180 (1984).
pubmed: 6741515
doi: 10.1111/j.1651-2227.1984.tb09924.x
Seidman, D. S. et al. Neonatal hyperbilirubinemia and physical and cognitive performance at 17 years of age. Pediatrics 88, 828–833 (1991).
pubmed: 1896294
doi: 10.1542/peds.88.4.828
Odell, G. B., Storey, G. N. & Rosenberg, L. A. Studies in kernicterus. 3. The saturation of serum proteins with bilirubin during neonatal life and its relationship to brain damage at five years. J. Pediatr. 76, 12–21 (1970).
pubmed: 5410148
doi: 10.1016/S0022-3476(70)80124-X
Hansen, R. L., Hughes, G. G. & Ahlfors, C. E. Neonatal bilirubin exposure and psychoeducational outcome. J. Dev. Behav. Pediatr. 12, 287–293 (1991).
pubmed: 1939683
doi: 10.1097/00004703-199110000-00001
Visser, S. N. et al. Trends in the parent-report of health care provider-diagnosed and medicated attention-deficit/hyperactivity disorder: United States, 2003-2011. J. Am. Acad. Child Adolesc. Psychiatry 53, 34–46 e2 (2014).
pubmed: 24342384
doi: 10.1016/j.jaac.2013.09.001
Subcommittee on Attention-Deficit/Hyperactivity Disorder et al. ADHD: clinical practice guideline for the diagnosis, evaluation, and treatment of attention-deficit/hyperactivity disorder in children and adolescents. Pediatrics 128, 1007–1022 (2011).
doi: 10.1542/peds.2011-2654
Aarnoudse-Moens, C. S., Weisglas-Kuperus, N., van Goudoever, J. B. & Oosterlaan, J. Meta-analysis of neurobehavioral outcomes in very preterm and/or very low birth weight children. Pediatrics 124, 717–728 (2009).
pubmed: 19651588
doi: 10.1542/peds.2008-2816
Lindstrom, K., Lindblad, F. & Hjern, A. Preterm birth and attention-deficit/hyperactivity disorder in schoolchildren. Pediatrics 127, 858–865 (2011).
doi: 10.1542/peds.2010-1279
pubmed: 21502231
Scott, M. N. et al. Behavior disorders in extremely preterm/extremely low birth weight children in kindergarten. J. Dev. Behav. Pediatr. 33, 202–213 (2012).
pubmed: 22245934
pmcid: 3319865
doi: 10.1097/DBP.0b013e3182475287
Wei, C. C. et al. Neonatal jaundice and increased risk of attention-deficit hyperactivity disorder: a population-based cohort study. J. Child Psychol. Psychiatry 56, 460–467 (2015).
pubmed: 25056274
doi: 10.1111/jcpp.12303
Stanford, J. A. et al. Hyperactivity in the Gunn rat model of neonatal jaundice: age-related attenuation and emergence of gait deficits. Pediatr. Res. 77, 434–439 (2015).
pubmed: 25518009
doi: 10.1038/pr.2014.199
Jangaard, K. A., Fell, D. B., Dodds, L. & Allen, A. C. Outcomes in a population of healthy term and near-term infants with serum bilirubin levels of >or=325 micromol/L (>or=19 mg/dL) who were born in Nova Scotia, Canada, between 1994 and 2000. Pediatrics 122, 119–124 (2008).
pubmed: 18595994
doi: 10.1542/peds.2007-0967
Kuzniewicz, M., Escobar, G. J. & Newman, T. B. No association between hyperbilirubinemia and attention-deficit disorder. Pediatrics 123, e367–e368 (2009).
pubmed: 19171601
doi: 10.1542/peds.2008-2803
Johnson, S. et al. Academic attainment and special educational needs in extremely preterm children at 11 years of age: the EPICure study. Arch. Dis. Child Fetal Neonatal Ed. 94, F283–F289 (2009).
pubmed: 19282336
doi: 10.1136/adc.2008.152793
Taylor, H. G., Espy, K. A. & Anderson, P. J. Mathematics deficiencies in children with very low birth weight or very preterm birth. Dev. Disabil. Res Rev. 15, 52–59 (2009).
pubmed: 19213016
doi: 10.1002/ddrr.51
Kovachy, V. N., Adams, J. N., Tamaresis, J. S. & Feldman, H. M. Reading abilities in school-aged preterm children: a review and meta-analysis. Dev. Med. Child Neurol. 57, 410–419 (2015).
pubmed: 25516105
doi: 10.1111/dmcn.12652
Grunau, R. E., Whitfield, M. F. & Davis, C. Pattern of learning disabilities in children with extremely low birth weight and broadly average intelligence. Arch. Pediatr. Adolesc. Med. 156, 615–620 (2002).
pubmed: 12038896
doi: 10.1001/archpedi.156.6.615
Hokkanen, L., Launes, J. & Michelsson, K. Adult neurobehavioral outcome of hyperbilirubinemia in full term neonates-a 30 year prospective follow-up study. PeerJ 2, e294 (2014).
pubmed: 24688870
pmcid: 3961148
doi: 10.7717/peerj.294
Croen, L. A., Yoshida, C. K., Odouli, R. & Newman, T. B. Neonatal hyperbilirubinemia and risk of autism spectrum disorders. Pediatrics 115, e135–e138 (2005).
pubmed: 15687420
doi: 10.1542/peds.2004-1870
Maimburg, R. D., Bech, B. H., Vaeth, M., Moller-Madsen, B. & Olsen, J. Neonatal jaundice, autism, and other disorders of psychological development. Pediatrics 126, 872–878 (2010).
pubmed: 20937652
doi: 10.1542/peds.2010-0052
Maimburg, R. D. et al. Neonatal jaundice: a risk factor for infantile autism? Paediatr. Perinat. Epidemiol. 22, 562–568 (2008).
pubmed: 19000294
doi: 10.1111/j.1365-3016.2008.00973.x
Sugie, Y., Sugie, H., Fukuda, T. & Ito, M. Neonatal factors in infants with autistic disorder and typically developing infants. Autism 9, 487–494 (2005).
pubmed: 16287701
doi: 10.1177/1362361305057877
Froehlich-Santino, W. et al. Prenatal and perinatal risk factors in a twin study of autism spectrum disorders. J. Psychiatr. Res. 54, 100–108 (2014).
pubmed: 24726638
pmcid: 4072527
doi: 10.1016/j.jpsychires.2014.03.019
Lozada, L. E. et al. Association of autism spectrum disorders with neonatal hyperbilirubinemia. Glob. Pediatr. Health 2, 2333794X15596518 (2015).
pubmed: 27335973
pmcid: 4784634
Duan, G., Yao, M., Ma, Y. & Zhang, W. Perinatal and background risk factors for childhood autism in central China. Psychiatry Res. 220, 410–417 (2014).
pubmed: 25085792
doi: 10.1016/j.psychres.2014.05.057
Wennberg, R. P., Ahlfors, C. E., Bhutani, V. K., Johnson, L. H. & Shapiro, S. M. Toward understanding kernicterus: a challenge to improve the management of jaundiced newborns. Pediatrics 117, 474–485 (2006).
pubmed: 16452368
doi: 10.1542/peds.2005-0395
Amin, S. B. & Wang, H. Bilirubin albumin binding and unbound unconjugated hyperbilirubinemia in premature infants. J. Pediatr. 192, 47–52 (2018).
pubmed: 29132818
doi: 10.1016/j.jpeds.2017.09.039
Woods, P. L., Rieger, I., Wocadlo, C. & Gordon, A. Predicting the outcome of specific language impairment at five years of age through early developmental assessment in preterm infants. Early Hum. Dev. 90, 613–619 (2014).
pubmed: 25239156
doi: 10.1016/j.earlhumdev.2014.07.010
Barre, N., Morgan, A., Doyle, L. W. & Anderson, P. J. Language abilities in children who were very preterm and/or very low birth weight: a meta-analysis. J. Pediatr. 158, 766–774.e1 (2011).
pubmed: 21146182
doi: 10.1016/j.jpeds.2010.10.032
van Noort-van der Spek, I. L., Franken, M. C. & Weisglas-Kuperus, N. Language functions in preterm-born children: a systematic review and meta-analysis. Pediatrics 129, 745–754 (2012).
pubmed: 22430458
doi: 10.1542/peds.2011-1728
Chisin, R., Perlman, M. & Sohmer, H. Cochlear and brain stem responses in hearing loss following neonatal hyperbilirubinemia. Ann. Otol. Rhinol. Laryngol. 88(3 Pt 1), 352–357 (1979).
pubmed: 464527
doi: 10.1177/000348947908800310
Kaga, K., Kitazumi, E. & Kodama, K. Auditory brain stem responses of kernicterus infants. Int. J. Pediatr. Otorhinolaryngol. 1, 255–264 (1979).
pubmed: 552383
doi: 10.1016/0165-5876(79)90020-X
Saluja, S., Agarwal, A., Kler, N. & Amin, S. Auditory neuropathy spectrum disorder in late preterm and term infants with severe jaundice. Int. J. Pediatr. Otorhinolaryngol. 74, 1292–1297 (2010).
pubmed: 20832127
pmcid: 2962441
doi: 10.1016/j.ijporl.2010.08.007
Lenhardt, M. L., McArtor, R. & Bryant, B. Effects of neonatal hyperbilirubinemia on the brainstem electric response. J. Pediatr. 104, 281–284 (1984).
pubmed: 6694027
doi: 10.1016/S0022-3476(84)81013-6
Akman, I. et al. Auditory neuropathy in hyperbilirubinemia: is there a correlation between serum bilirubin, neuron-specific enolase levels and auditory neuropathy? Int J. Audiol. 43, 516–522 (2004).
pubmed: 15726842
doi: 10.1080/14992020400050066
Ahlfors, C. E., Amin, S. B. & Parker, A. E. Unbound bilirubin predicts abnormal automated auditory brainstem response in a diverse newborn population. J. Perinatol. 29, 305–309 (2009).
pubmed: 19242487
pmcid: 4285409
doi: 10.1038/jp.2008.199
Amin, S. B. et al. Bilirubin and serial auditory brainstem responses in premature infants. Pediatrics 107, 664–670 (2001).
pubmed: 11335741
doi: 10.1542/peds.107.4.664
Nakamura, H. et al. Auditory nerve and brainstem responses in newborn infants with hyperbilirubinemia. Pediatrics 75, 703–708 (1985).
pubmed: 3982902
doi: 10.1542/peds.75.4.703
Funato, M., Tamai, H., Shimada, S. & Nakamura, H. Vigintiphobia, unbound bilirubin, and auditory brainstem responses. Pediatrics 93, 50–53 (1994).
pubmed: 8265323
doi: 10.1542/peds.93.1.50
Amin, S. B., et al. Chronic auditory toxicity in late preterm and term infants with significant hyperbilirubinemia. Pediatrics. 140, e20164009 (2017).
Amin, S. B. et al. Auditory toxicity in late preterm and term neonates with severe jaundice. Dev. Med. Child Neurol. 59, 297–303 (2017).
pubmed: 27718221
doi: 10.1111/dmcn.13284
Amin, S. B., Wang, H., Laroia, N. & Orlando, M. Unbound bilirubin and auditory neuropathy spectrum disorder in late preterm and term infants with severe jaundice. J. Pediatr. 173, 84–89 (2016).
pubmed: 26952116
pmcid: 4884491
doi: 10.1016/j.jpeds.2016.02.024
Abrams, D. A., Nicol, T., Zecker, S. G. & Kraus, N. Auditory brainstem timing predicts cerebral asymmetry for speech. J. Neurosci. 26, 11131–11137 (2006).
pubmed: 17065453
doi: 10.1523/JNEUROSCI.2744-06.2006
pmcid: 6674666
Mason, S. M. & Mellor, D. H. Brain-stem, middle latency and late cortical evoked potentials in children with speech and language disorders. Electroencephalogr. Clin. Neurophysiol. 59, 297–309 (1984).
pubmed: 6203719
doi: 10.1016/0168-5597(84)90047-9
Kral, A., Tillein, J., Heid, S., Hartmann, R. & Klinke, R. Postnatal cortical development in congenital auditory deprivation. Cereb. Cortex 15, 552–562 (2005).
pubmed: 15319310
doi: 10.1093/cercor/bhh156
Tallal, P., Stark, R. E. & Mellits, D. The relationship between auditory temporal analysis and receptive language development: evidence from studies of developmental language disorder. Neuropsychologia 23, 527–534 (1985).
pubmed: 2412182
doi: 10.1016/0028-3932(85)90006-5
Yoshinaga-Itano, C. Benefits of early intervention for children with hearing loss. Otolaryngol. Clin. North Am. 32, 1089–1102 (1999).
pubmed: 10523454
doi: 10.1016/S0030-6665(05)70196-1
Amin, S. B., Vogler-Elias, D., Orlando, M. & Wang, H. Auditory neural myelination is associated with early childhood language development in premature infants. Early Hum. Dev. 90, 673–678 (2014).
pubmed: 25194836
pmcid: 4301398
doi: 10.1016/j.earlhumdev.2014.07.014
Amin, S., Orlando, M. & Wang, H. Unbound bilirubin and auditory neuropathy spectrum disorder in premature infants. Pediatric Academic Society Meeting, Boston, 2012. p. 752525.
Amin, S. B. et al. Auditory toxicity in late preterm and term neonates with severe jaundice. Dev. Med. Child Neurol. 59, 297–303 (2016).
pubmed: 27718221
pmcid: 5288130
doi: 10.1111/dmcn.13284
Amin, S. B. & Wang, H. Unbound unconjugated hyperbilirubinemia is associated with central apnea in premature infants. J. Pediatr. 166, 571–575 (2015).
pubmed: 25596965
pmcid: 4344891
doi: 10.1016/j.jpeds.2014.12.003