Intestinal helminth infection promotes IL-5- and CD4


Journal

Mucosal immunology
ISSN: 1935-3456
Titre abrégé: Mucosal Immunol
Pays: United States
ID NLM: 101299742

Informations de publication

Date de publication:
03 2019
Historique:
received: 13 08 2018
accepted: 03 10 2018
revised: 27 09 2018
pubmed: 8 11 2018
medline: 25 6 2019
entrez: 8 11 2018
Statut: ppublish

Résumé

The ability of helminths to manipulate the immune system of their hosts to ensure their own survival is often credited with affecting responses to other pathogens. We undertook co-infection experiments in mice to determine how infection with the intestinal helminth Heligmosomoides polygyrus affected the parasitological, immunological and physiological outcomes of a primary infection with a distinct species of helminth; the lung migratory parasite Nippostrongylus brasiliensis. We found that migrating N. brasiliensis larvae were killed in the lungs of H. polygyrus-infected mice by a process involving IL-33-activated CD4

Identifiants

pubmed: 30401814
doi: 10.1038/s41385-018-0102-8
pii: S1933-0219(22)00383-X
doi:

Substances chimiques

Antigens, Helminth 0
Interleukin-33 0
Interleukin-5 0

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

352-362

Références

Petney, T. N. & Andrews, R. H. Multiparasite communities in animals and humans: frequency, structure and pathogenic significance. Int. J. Parasitol. 28, 377–393 (1998).
doi: 10.1016/S0020-7519(97)00189-6
Pullan, R. & Brooker, S. The health impact of polyparasitism in humans: are we under-estimating the burden of parasitic diseases? Parasitology 135, 783–794 (2008).
doi: 10.1017/S0031182008000346
Salgame, P., Yap, G. S. & Gause, W. C. Effect of helminth-induced immunity on infections with microbial pathogens. Nat. Immunol. 14, 1118–1126 (2013).
doi: 10.1038/ni.2736
Curry, A. J. et al. Evidence that cytokine-mediated immune interactions induced by Schistosoma mansoni alter disease outcome in mice concurrently infected with Trichuris muris. J. Exp. Med. 181, 769–774 (1995).
doi: 10.1084/jem.181.2.769
Guo, L. et al. Innate immunological function of TH2 cells in vivo. Nat. Immunol. 16, 1051–1059 (2015).
doi: 10.1038/ni.3244
Maizels, R. M. et al. Immune modulation and modulators in Heligmosomoides polygyrus infection. Exp. Parasitol. 132, 76–89 (2011).
doi: 10.1016/j.exppara.2011.08.011
Reynolds, L. A., Filbey, K. J. & Maizels, R. M. Immunity to the model intestinal helminth parasite Heligmosomoides polygyrus. Semin. Immunopathol. 34, 829–846 (2012).
doi: 10.1007/s00281-012-0347-3
Bazzone, L. E. et al. Co-infection with the intestinal nematode Heligmosomoides polygyrus markedly reduces hepatic egg-induced immunopathology and proinflammatory cytokines in mouse models of severe schistosomiasis. Infect. Immun. 76, 5164–5172 (2008).
doi: 10.1128/IAI.00673-08
Bouchery, T. et al. A novel blood-feeding detoxification pathway in Nippostrongylus brasiliensis L3 reveals a potential checkpoint for arresting hookworm development. PLoS Pathog. 14, e1006931 (2018).
doi: 10.1371/journal.ppat.1006931
Camberis, M., Le Gros, G., Urban, J. Animal model of Nippostrongylus brasiliensis and Heligmosomoides polygyrus. Curr. Protoc. Immunol. Chapter 19, Unit 19.12 (2003).
Harvie, M. et al. The lung is an important site for priming CD4 T-cell-mediated protective immunity against gastrointestinal helminth parasites. Infect. Immun. 78, 3753–3762 (2010).
doi: 10.1128/IAI.00502-09
Bouchery, T. et al. ILC2s and T cells cooperate to ensure maintenance of M2 macrophages for lung immunity against hookworms. Nat. Commun. 6, 6970 (2015).
doi: 10.1038/ncomms7970
Knott, M. L., Hogan, S. P., Wang, H., Matthaei, K. I. & Dent, L. A. FVB/N mice are highly resistant to primary infection with Nippostrongylus brasiliensis. Parasitology 136, 93–106 (2009).
doi: 10.1017/S0031182008005192
Katona, I. M., Urban, J. F. Jr. & Finkelman, F. D. The role of L3T4 + and Lyt-2 + T cells in the IgE response and immunity to Nippostrongylus brasiliensis. J. Immunol. 140, 3206–3211 (1988).
pubmed: 2966208
Mohrs, K., Harris, D. P., Lund, F. E. & Mohrs, M. Systemic dissemination and persistence of Th2 and type 2 cells in response to infection with a strictly enteric nematode parasite. J. Immunol. 175, 5306–5313 (2005).
doi: 10.4049/jimmunol.175.8.5306
Filbey, K. J. et al. Innate and adaptive type 2 immune cell responses in genetically controlled resistance to intestinal helminth infection. Immunol. Cell Biol. 92, 436–448 (2014).
doi: 10.1038/icb.2013.109
Marsland, B. J., Kurrer, M., Reissmann, R., Harris, N. L. & Kopf, M. Nippostrongylus brasiliensis infection leads to the development of emphysema associated with the induction of alternatively activated macrophages. Eur. J. Immunol. 38, 479–488 (2008).
doi: 10.1002/eji.200737827
Obata-Ninomiya, K. et al. The skin is an important bulwark of acquired immunity against intestinal helminths. J. Exp. Med. 210, 2583–2595 (2013).
doi: 10.1084/jem.20130761
Harvie, M., Camberis, M. & Le Gros, G. Development of CD4 T cell dependent immunity against N. brasiliensis infection. Front. Immunol. 4, 74 (2013).
doi: 10.3389/fimmu.2013.00074
Baaten, B. J., Tinoco, R., Chen, A. T. & Bradley, L. M. Regulation of antigen-experienced T cells: lessons from the quintessential memory marker CD44. Front. Immunol. 3, 23 (2012).
doi: 10.3389/fimmu.2012.00023
Endo, Y., Hirahara, K., Yagi, R., Tumes, D. J. & Nakayama, T. Pathogenic memory type Th2 cells in allergic inflammation. Trends Immunol. 35, 69–78 (2014).
doi: 10.1016/j.it.2013.11.003
Endo, Y. et al. The interleukin-33-p38 kinase axis confers memory T helper 2 cell pathogenicity in the airway. Immunity 42, 294–308 (2015).
doi: 10.1016/j.immuni.2015.01.016
Thawer, S. G. et al. Lung-resident CD4
doi: 10.1038/mi.2013.40
Yamaguchi, Y. et al. Purified interleukin 5 supports the terminal differentiation and proliferation of murine eosinophilic precursors. J. Exp. Med. 167, 43–56 (1988).
doi: 10.1084/jem.167.1.43
Kita, H., Weiler, D. A., Abu-Ghazaleh, R., Sanderson, C. J. & Gleich, G. J. Release of granule proteins from eosinophils cultured with IL-5. J. Immunol. 149, 629–635 (1992).
pubmed: 1624806
Collins, P. D., Marleau, S., Griffiths-Johnson, D. A., Jose, P. J. & Williams, T. J. Cooperation between interleukin-5 and the chemokine eotaxin to induce eosinophil accumulation in vivo. J. Exp. Med. 182, 1169–1174 (1995).
doi: 10.1084/jem.182.4.1169
Klion, A. D. & Nutman, T. B. The role of eosinophils in host defense against helminth parasites. J. Allergy Clin. Immunol. 113, 30–37 (2004).
doi: 10.1016/j.jaci.2003.10.050
Mayeno, A. N., Curran, A. J., Roberts, R. L. & Foote, C. S. Eosinophils preferentially use bromide to generate halogenating agents. J. Biol. Chem. 264, 5660–5668 (1989).
pubmed: 2538427
Wu, W., Chen, Y., d’Avignon, A. & Hazen, S. L. 3-Bromotyrosine and 3,5-dibromotyrosine are major products of protein oxidation by eosinophil peroxidase: potential markers for eosinophil-dependent tissue injury in vivo. Biochemistry 38, 3538–3548 (1999).
doi: 10.1021/bi982401l
Jacobsen, E. A. et al. Eosinophil activities modulate the immune/inflammatory character of allergic respiratory responses in mice. Allergy 69, 315–327 (2013).
doi: 10.1111/all.12321
Wills-Karp, M. et al. Trefoil factor 2 rapidly induces interleukin 33 to promote type 2 immunity during allergic asthma and hookworm infection. J. Exp. Med. 209, 607–622 (2012).
doi: 10.1084/jem.20110079
Hung, L.-Y. et al. IL-33 drives biphasic IL-13 production for noncanonical Type 2 immunity against hookworms. Proc. Natl. Acad. Sci. USA 110, 282–287 (2013).
doi: 10.1073/pnas.1206587110
Kurowska-Stolarska, M. et al. IL-33 induces antigen-specific IL-5 + T cells and promotes allergic-induced airway inflammation independent of IL-4. J. Immunol. 181, 4780–4790 (2008).
doi: 10.4049/jimmunol.181.7.4780
Townsend, M. J., Fallon, P. G., Matthews, D. J., Jolin, H. E. & McKenzie, A. N. T1/ST2-deficient mice demonstrate the importance of T1/ST2 in developing primary T helper cell type 2 responses. J. Exp. Med. 191, 1069–1076 (2000).
doi: 10.1084/jem.191.6.1069
Cliffe, L. J. & Grencis, R. K. The Trichuris muris system: a paradigm of resistance and susceptibility to intestinal nematode infection. Adv. Parasitol. 57, 255–307 (2004).
doi: 10.1016/S0065-308X(04)57004-5
Colwell, D. A. & Wescott, R. B. Prolongation of egg production of Nippostrongylus brasiliensis in mice concurrently infected with Nematospiroides dubius. J. Parasitol. 59, 216 (1973).
doi: 10.2307/3278613
Jenkins, D. C. The influence of Nematospiroides dubius on subsequent Nippostrongylus brasiliensis infections in mice. Parasitology 71, 349–355 (1975).
doi: 10.1017/S0031182000046783
Della Bruna, C. & Xenia, B. Nippostrongylus brasiliensis in mice: reduction of worm burden and prolonged infection induced by presence of Nematospiroides dubius. J. Parasitol. 62, 490–491 (1976).
doi: 10.2307/3279164
Keely, S., Talley, N. J. & Hansbro, P. M. Pulmonary-intestinal cross-talk in mucosal inflammatory disease. Mucosal Immunol. 5, 7–18 (2012).
doi: 10.1038/mi.2011.55
Ruane, D. et al. Lung dendritic cells induce migration of protective T cells to the gastrointestinal tract. J. Exp. Med. 210, 1871–1888 (2013).
doi: 10.1084/jem.20122762
Herbst, T. et al. Antibodies and IL-3 support helminth-induced basophil expansion. Proc. Natl. Acad. Sci. USA 109, 14954–14959 (2012).
doi: 10.1073/pnas.1117584109
Brosschot, T. P. & Reynolds, L. A. The impact of a helminth-modified microbiome on host immunity. Mucosal Immunol. 11, 1039–1046 (2018).
doi: 10.1038/s41385-018-0008-5
McFarlane, A. J. et al. Enteric helminth-induced type I interferon signaling protects against pulmonary virus infection through interaction with the microbiota. J. Allergy Clin. Immunol. 140, 1068–1078 (2017).
doi: 10.1016/j.jaci.2017.01.016
Chenery, A. L. et al. Low-dose intestinal Trichuris muris infection alters the lung immune mMicroenvironment and can suppress allergic airway inflammation. Infect. Immun. 84, 491–501 (2016).
doi: 10.1128/IAI.01240-15
Schmitz, J. et al. IL-33, an Iinterleukin-1-like cytokine that signals via the IL-1 receptor-related protein ST2 and induces T helper Type 2-associated cytokines. Immunity 23, 479–490 (2005).
doi: 10.1016/j.immuni.2005.09.015
Stephens, R., Randolph, D. A., Huang, G., Holtzman, M. J. & Chaplin, D. D. Antigen-nonspecific recruitment of Th2 cells to the lung as a mechanism for viral infection-induced allergic asthma. J. Immunol. 169, 5458–5467 (2002).
doi: 10.4049/jimmunol.169.10.5458
Unutmaz, D., Pileri, P. & Abrignani, S. Antigen-independent activation of naive and memory resting T cells by a cytokine combination. J. Exp. Med. 180, 1159–1164 (1994).
doi: 10.1084/jem.180.3.1159
Steinfelder, S., Rausch, S., Michael, D., Kuhl, A. A. & Hartmann, S. Intestinal helminth infection induces highly functional resident memory CD4( + ) T cells in mice. Eur. J. Immunol. 47, 353–363 (2017).
doi: 10.1002/eji.201646575
McLaren, D. J., Mackenzie, C. D. & Ramalho-Pinto, F. J. Ultrastructural observations on the in vitro interaction between rat eosinophils and some parasitic helminths (Schistosoma mansoni, Trichinella spiralis and Nippostrongylus brasiliensis). Clin. Exp. Immunol. 30, 105–118 (1977).
pubmed: 564249 pmcid: 1541177
Giacomin, P. R. et al. The role of complement in innate, adaptive and eosinophil-dependent immunity to the nematode Nippostrongylus brasiliensis. Mol. Immunol. 45, 446–455 (2007).
doi: 10.1016/j.molimm.2007.05.029
Heinecke, J. W. Eosinophil-dependent bromination in the pathogenesis of asthma. J. Clin. Invest. 105, 1331–1332 (2000).
doi: 10.1172/JCI10072
Gause, W. C., Wynn, T. A. & Allen, J. E. Type 2 immunity and wound healing: evolutionary refinement of adaptive immunity by helminths. Nat. Rev. Immunol. 13, 607–614 (2013).
doi: 10.1038/nri3476
Artis, D., Potten, C. S., Else, K. J., Finkelman, F. D. & Grencis, R. K. Trichuris muris: host intestinal epithelial cell hyperproliferation during chronic infection is regulated by interferon-gamma. Exp. Parasitol. 92, 144–153 (1999).
doi: 10.1006/expr.1999.4407
Aldridge, R. E. et al. Eosinophil peroxidase produces hypobromous acid in the airways of stable asthmatics. Free Radic. Biol. Med. 33, 847–856 (2002).
doi: 10.1016/S0891-5849(02)00976-0
Wedes, S. H. et al. Noninvasive markers of airway inflammation in asthma. Clin. Transl. Sci. 2, 112–117 (2009).
doi: 10.1111/j.1752-8062.2009.00095.x

Auteurs

Kara J Filbey (KJ)

Malaghan Institute of Medical Research, Wellington, New Zealand.

Mali Camberis (M)

Malaghan Institute of Medical Research, Wellington, New Zealand.

Jodie Chandler (J)

Malaghan Institute of Medical Research, Wellington, New Zealand.

Rufus Turner (R)

Centre for Free Radical Research, Department of Pathology & Biological Science, University of Otago, Christchurch, New Zealand.

Anthony J Kettle (AJ)

Centre for Free Radical Research, Department of Pathology & Biological Science, University of Otago, Christchurch, New Zealand.

Ramon M Eichenberger (RM)

Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Australia.

Paul Giacomin (P)

Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Australia.

Graham Le Gros (G)

Malaghan Institute of Medical Research, Wellington, New Zealand. glegros@malaghan.org.nz.

Articles similaires

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male
Humans Meals Time Factors Female Adult

Classifications MeSH