Rethinking assumptions about how trial and nuisance variability impact neural task performance in a fast-processing regime.
neural performance
noise
nuisance variability
population coding
trial variability
Journal
Journal of neurophysiology
ISSN: 1522-1598
Titre abrégé: J Neurophysiol
Pays: United States
ID NLM: 0375404
Informations de publication
Date de publication:
01 01 2019
01 01 2019
Historique:
pubmed:
8
11
2018
medline:
23
8
2019
entrez:
8
11
2018
Statut:
ppublish
Résumé
Task performance is determined not only by the amount of task-relevant signal present in our brains but also by the presence of noise, which can arise from multiple sources. Internal noise, or "trial variability," manifests as trial-by-trial variations in neural responses under seemingly identical conditions. External factors can also translate into noise, particularly when a task requires extraction of a particular type of information from our environment amid changes in other task-irrelevant "nuisance" parameters. To better understand how signal, trial variability, and nuisance variability combine to determine neural task performance, we explored their interactions, both in simulation and when applied to recorded neural data. This exploration revealed that trial variability is typically larger than a neuron's task-relevant signal for tasks with fast reaction times, where spike count integration windows are short. In this low signal-to-trial variability regime, nuisance variability has the counterintuitive property of having a negligible impact on single-neuron task performance, even when it dominates the task-relevant signal. The inconsequential impact of nuisance variability on individual neurons also extends to descriptions of population performance, under the assumption that both trial and nuisance variability are uncorrelated between neurons. These results demonstrate that some basic intuitions about neural coding are misguided in the context of a fast-processing, low-spike-count regime. NEW & NOTEWORTHY Many everyday tasks require us to extract specific information from our environment while ignoring other things. When the neurons in our brains that carry task-relevant signals are also modulated by task-irrelevant "nuisance" information, nuisance modulation is expected to act as performance-limiting noise. Using both simulated and recorded neural data, we demonstrate that these intuitions are misguided when the brain operates in a fast-processing, low-spike-count regime, where nuisance variability is largely inconsequential for performance.
Identifiants
pubmed: 30403544
doi: 10.1152/jn.00503.2018
pmc: PMC6383663
doi:
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Langues
eng
Pagination
115-130Subventions
Organisme : NEI NIH HHS
ID : P30 EY001583
Pays : United States
Organisme : NEI NIH HHS
ID : R01 EY020851
Pays : United States
Références
Annu Rev Neurosci. 1998;21:227-77
pubmed: 9530497
Elife. 2016 Apr 12;5:
pubmed: 27067378
J Neurophysiol. 2014 Sep 15;112(6):1584-98
pubmed: 24920017
J Neurophysiol. 2006 Jun;95(6):3633-44
pubmed: 16554512
PLoS One. 2018 Jul 19;13(7):e0200528
pubmed: 30024905
J Neurosci. 2007 Nov 7;27(45):12292-307
pubmed: 17989294
J Neurosci. 2017 May 17;37(20):5195-5203
pubmed: 28432137
Nature. 2013 Nov 7;503(7474):78-84
pubmed: 24201281
Nature. 2013 May 30;497(7451):585-90
pubmed: 23685452
Neuron. 2016 Mar 16;89(6):1305-1316
pubmed: 26924437
J Neurosci. 2006 Sep 13;26(37):9567-78
pubmed: 16971541
J Neurosci. 2009 Apr 29;29(17):5671-80
pubmed: 19403833
Nat Neurosci. 2013 Aug;16(8):1132-9
pubmed: 23792943
Nat Neurosci. 2014 Jun;17(6):858-65
pubmed: 24777419
J Neurosci. 2013 Feb 6;33(6):2254-67
pubmed: 23392657
Neuron. 2013 Mar 6;77(5):969-79
pubmed: 23473325
Nat Neurosci. 2011 Jun 27;14(7):811-9
pubmed: 21709677
Nat Neurosci. 2014 Oct;17(10):1410-7
pubmed: 25195105
Annu Rev Neurosci. 2016 Jul 8;39:237-56
pubmed: 27145916
Nat Neurosci. 2014 Dec;17(12):1784-1792
pubmed: 25383902
Nat Neurosci. 2009 Dec;12(12):1594-600
pubmed: 19915566
Nat Rev Neurosci. 2006 May;7(5):358-66
pubmed: 16760916
J Neurosci. 2002 Nov 1;22(21):9475-89
pubmed: 12417672
Annu Rev Neurosci. 2018 Jul 8;41:77-97
pubmed: 29799773
Neuron. 2012 Feb 9;73(3):415-34
pubmed: 22325196
Trends Cogn Sci. 2007 Aug;11(8):333-41
pubmed: 17631409
Neural Comput. 2016 Nov;28(11):2291-2319
pubmed: 27626960
Nat Neurosci. 2016 Apr;19(4):613-22
pubmed: 26900926
Science. 2005 Nov 4;310(5749):863-6
pubmed: 16272124
J Neurophysiol. 2009 Jul;102(1):360-76
pubmed: 19439676
J Neurophysiol. 2016 Sep 1;116(3):1449-67
pubmed: 27334948
J Neurosci. 2009 May 20;29(20):6635-48
pubmed: 19458234
J Neurosci. 2010 Sep 29;30(39):12978-95
pubmed: 20881116