High-Order Hadamard-Encoded Transmission for Tissue Background Suppression in Ultrasound Contrast Imaging: Memory Effect and Decoding Schemes.
Journal
IEEE transactions on ultrasonics, ferroelectrics, and frequency control
ISSN: 1525-8955
Titre abrégé: IEEE Trans Ultrason Ferroelectr Freq Control
Pays: United States
ID NLM: 9882735
Informations de publication
Date de publication:
01 2019
01 2019
Historique:
pubmed:
8
11
2018
medline:
2
1
2020
entrez:
8
11
2018
Statut:
ppublish
Résumé
Hadamard-encoded multipulses (HEM) transmit has recently been utilized for tissue background suppression in ultrasound contrast imaging to enhance the contrast-to-tissue ratio (CTR). Nonetheless, the second-harmonic component in HEM transmit results in residual tissue background after decoding and, thus, compromises the detection of contrast microbubbles. Theoretically, high-order HEM transmit can produce harmonic-free background but the memory effect, which considers the nonlinear contribution of previous bit waveform into the next one in the progress of harmonic generation, may limit the achievable tissue suppression. In this paper, three possible harmonic-free pairs using time-shifted subtraction (SH1, SH2, and SH3) in the fourth-order Hadamard decoding are analyzed and experimentally compared using hydrophone measurement and B-mode imaging. Moreover, the orthogonal decoding (OD) of HEM transmit is also proposed with pulse-inversion harmonic suppression (PIHS) to remedy memory effect on the tissue background. Results show that SH3, which utilizes the third and fourth rows for decoding, provides the lowest magnitude of tissue background among all possible decoding pairs and performs comparably to the reference PI and amplitude-modulation sequence in terms of CTR. For PIHS-OD, the pulse subtraction effectively removes the harmonic interferences from memory effect and, thus, further improves the CTR by 5.4 dB compared to SH3. For high-order HEM transmit, PIHS-OD can help to eliminate the residual tissue background due to memory effect and is comparable to Hadamard decoding in temporal resolution and possible motion artifacts.
Identifiants
pubmed: 30403628
doi: 10.1109/TUFFC.2018.2879352
doi:
Substances chimiques
Contrast Media
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM