Bundle sheath chloroplast volume can house sufficient Rubisco to avoid limiting C4 photosynthesis during chilling.


Journal

Journal of experimental botany
ISSN: 1460-2431
Titre abrégé: J Exp Bot
Pays: England
ID NLM: 9882906

Informations de publication

Date de publication:
01 01 2019
Historique:
received: 12 07 2018
accepted: 13 09 2018
pubmed: 9 11 2018
medline: 12 2 2020
entrez: 9 11 2018
Statut: ppublish

Résumé

C4 leaves confine Rubisco to bundle sheath cells. Thus, the size of bundle sheath compartments and the total volume of chloroplasts within them limit the space available for Rubisco. Rubisco activity limits photosynthesis at low temperatures. C3 plants counter this limitation by increasing leaf Rubisco content, yet few C4 species do the same. Because C3 plants usually outperform C4 plants in chilling environments, it has been suggested that there is insufficient chloroplast volume available in the bundle sheath of C4 leaves to allow such an increase in Rubisco at low temperatures. We investigated this potential limitation by measuring bundle sheath and mesophyll compartment volumes and chloroplast contents, as well as leaf thickness and inter-veinal distance, in three C4 Andropogoneae grasses: two crops (Zea mays and Saccharum officinarum) and a wild, chilling-tolerant grass (Miscanthus × giganteus). A wild C4 Paniceae grass (Alloteropsis semialata) was also included. Despite significant structural differences between species, there was no evidence of increased bundle sheath chloroplast volume per leaf area available to the chilling-tolerant species, relative to the chilling-sensitive ones. Maximal theoretical photosynthetic capacity of the leaf far exceeded the photosynthetic rates achieved even at low temperatures. C4 bundle sheath cells therefore have the chloroplast volume to house sufficient Rubisco to avoid limiting C4 photosynthesis during chilling.

Identifiants

pubmed: 30407578
pii: 5165402
doi: 10.1093/jxb/ery345
pmc: PMC6305190
doi:

Substances chimiques

Ribulose-Bisphosphate Carboxylase EC 4.1.1.39

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

357-365

Références

Plant Cell Environ. 2008 May;31(5):602-21
pubmed: 17996013
Plant Physiol. 2003 Jul;132(3):1577-85
pubmed: 12857837
Am J Bot. 2012 Jan;99(1):55-67
pubmed: 22210840
Annu Rev Plant Biol. 2013;64:701-22
pubmed: 23473604
Evolution. 2017 Jun;71(6):1541-1555
pubmed: 28395112
J Exp Bot. 2011 May;62(9):3103-8
pubmed: 21511901
Ecol Lett. 2015 Oct;18(10):1021-9
pubmed: 26248677
J Exp Bot. 2014 Jul;65(13):3737-47
pubmed: 24958895
Ecol Lett. 2018 Mar;21(3):376-383
pubmed: 29318753
Proc Natl Acad Sci U S A. 2013 Jan 22;110(4):1381-6
pubmed: 23267116
J Exp Bot. 2006;57(2):303-17
pubmed: 16364950
J Exp Bot. 2008;59(7):1743-54
pubmed: 18403381
Plant Physiol. 2015 Nov;169(3):1850-61
pubmed: 26373659
Funct Plant Biol. 2007 May;34(4):247-267
pubmed: 32689352
Annu Rev Plant Biol. 2010;61:235-61
pubmed: 20192734
Plant Physiol. 2003 Jul;132(3):1688-97
pubmed: 12857847
Plant Physiol. 2009 Aug;150(4):2104-15
pubmed: 19535474
Plant Cell Environ. 2016 Jul;39(7):1420-31
pubmed: 26714623
Plant Physiol. 2005 Feb;137(2):638-50
pubmed: 15665246
Ann Bot. 2006 Jul;98(1):77-91
pubmed: 16704997
Plant Cell Environ. 2014 Nov;37(11):2587-600
pubmed: 24689501
J Exp Bot. 2002 Apr;53(369):609-20
pubmed: 11886880
Nat Plants. 2018 Oct;4(10):802-810
pubmed: 30287949
Plant Physiol. 2008 Sep;148(1):557-67
pubmed: 18539777
Planta. 2004 Nov;220(1):145-55
pubmed: 15258759
Photosynth Res. 2003;77(2-3):191-207
pubmed: 16228376
J Exp Bot. 2014 Jul;65(13):3725-36
pubmed: 24591058
J Exp Bot. 2008;59(7):1779-87
pubmed: 18503044
Plant Physiol. 1989 Dec;91(4):1543-50
pubmed: 16667214
Planta. 2009 Jan;229(2):369-82
pubmed: 18972128
Plant Cell Environ. 2006 Apr;29(4):720-8
pubmed: 17080621
Plant Physiol. 1977 May;59(5):795-9
pubmed: 16659945
J Exp Bot. 2014 Oct;65(18):5267-78
pubmed: 25039073
J Exp Bot. 2014 Jul;65(13):3357-69
pubmed: 24799561
J Exp Bot. 2017 Jan;68(2):335-345
pubmed: 28110277
J Exp Bot. 2008;59(15):4161-70
pubmed: 18980952
J Exp Bot. 2017 Apr 1;68(9):2345-2360
pubmed: 28379522
Plant Cell Environ. 2006 Feb;29(2):257-68
pubmed: 17080641
Plant Cell Environ. 2006 Mar;29(3):315-30
pubmed: 17080588
Ann Bot. 2015 May;115(6):981-90
pubmed: 25851133
Plant Cell Physiol. 2016 May;57(5):904-18
pubmed: 26985020

Auteurs

Charles P Pignon (CP)

University of Illinois, Carl R. Woese Institute for Genomic Biology and Departments of Crop Sciences and of Plant Biology, Urbana, IL, USA.

Marjorie R Lundgren (MR)

Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, USA.
Arnold Arboretum, Harvard University, Boston, USA.
Lancaster Environment Centre, Lancaster University, Lancaster, UK.

Colin P Osborne (CP)

Department of Animal and Plant Sciences, Alfred Denny Building, University of Sheffield, Sheffield, UK.

Stephen P Long (SP)

University of Illinois, Carl R. Woese Institute for Genomic Biology and Departments of Crop Sciences and of Plant Biology, Urbana, IL, USA.
Lancaster Environment Centre, Lancaster University, Lancaster, UK.

Articles similaires

Photosynthesis Ribulose-Bisphosphate Carboxylase Carbon Dioxide Molecular Dynamics Simulation Cyanobacteria
Genome, Viral Ralstonia Composting Solanum lycopersicum Bacteriophages
Semiconductors Photosynthesis Polymers Carbon Dioxide Bacteria
Fragaria Light Plant Leaves Osmosis Stress, Physiological

Classifications MeSH