PTBP1 contributes to spermatogenesis through regulation of proliferation in spermatogonia.
Alternative Splicing
/ physiology
Animals
Apoptosis
Cell Proliferation
/ physiology
Gene Expression
Heterogeneous-Nuclear Ribonucleoproteins
/ deficiency
Male
Mice, Knockout
Organ Size
Polypyrimidine Tract-Binding Protein
/ deficiency
Seminiferous Tubules
/ physiology
Sperm Count
Spermatocytes
/ metabolism
Spermatogenesis
/ physiology
Spermatogonia
/ cytology
Testis
/ cytology
Alternative splicing
Polypyrimidine track-binding protein
RNA-binding protein
Spermatogenesis
Spermatogonia proliferation
Journal
The Journal of reproduction and development
ISSN: 1348-4400
Titre abrégé: J Reprod Dev
Pays: Japan
ID NLM: 9438792
Informations de publication
Date de publication:
08 Feb 2019
08 Feb 2019
Historique:
pubmed:
13
11
2018
medline:
29
5
2019
entrez:
13
11
2018
Statut:
ppublish
Résumé
Polypyrimidine tract-binding protein 1 (PTBP1) is a highly conserved RNA-binding protein that is a well-known regulator of alternative splicing. Testicular tissue is one of the richest tissues with respect to the number of alternative splicing mRNA isoforms, but the molecular role(s) of PTBP1 in the regulation of these isoforms during spermatogenesis is still unclear. Here, we developed a germ cell-specific Ptbp1 conditional knockout (cKO) mouse model by using the Cre-loxP system to investigate the role of PTBP1 in spermatogenesis. Testis weight in Ptbp1 cKO mice was comparable to that in age-matched controls until 3 weeks of age; at ≥ 2 months old, testis weight was significantly lighter in cKO mice than in age-matched controls. Sperm count in Ptbp1 cKO mice at 2 months old was comparable to that in controls, whereas sperm count significantly decreased at 6 months old. Seminiferous tubules that exhibited degeneration in spermatogenic function were more evident in the 2-month-old Ptbp1 cKO mice than in controls. In addition, the early neonatal proliferation of spermatogonia, during postnatal days 1-5, was significantly retarded in Ptbp1 cKO mice compared with that in controls. An in vitro spermatogonia culture model (germline stem cells) revealed that hydroxytamoxifen-induced deletion of PTBP1 from germline stem cells caused severe proliferation arrest accompanied by an increase of apoptotic cell death. These data suggest that PTBP1 contributes to spermatogenesis through regulation of spermatogonia proliferation.
Identifiants
pubmed: 30416150
doi: 10.1262/jrd.2018-109
pmc: PMC6379764
doi:
Substances chimiques
Heterogeneous-Nuclear Ribonucleoproteins
0
Ptbp1 protein, mouse
0
Polypyrimidine Tract-Binding Protein
139076-35-0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
37-46Références
Cell. 1999 Dec 10;99(6):649-59
pubmed: 10612400
J Androl. 2000 Nov-Dec;21(6):776-98
pubmed: 11105904
Biol Reprod. 2003 Aug;69(2):612-6
pubmed: 12700182
EMBO J. 2003 Jun 16;22(12):2924-33
pubmed: 12805208
Dev Biol. 2004 May 15;269(2):447-58
pubmed: 15110712
Proc Natl Acad Sci U S A. 2004 Nov 23;101(47):16489-94
pubmed: 15520394
Nucleic Acids Res. 2005 Sep 29;33(17):5659-66
pubmed: 16195578
Nat Genet. 2008 Feb;40(2):225-31
pubmed: 18193047
Nat Protoc. 2008;3(6):1101-8
pubmed: 18546601
Biochem Soc Trans. 2008 Aug;36(Pt 4):641-7
pubmed: 18631133
Nature. 2008 Nov 27;456(7221):470-6
pubmed: 18978772
Nat Genet. 2008 Dec;40(12):1413-5
pubmed: 18978789
Development. 2009 Apr;136(7):1191-9
pubmed: 19270176
Birth Defects Res C Embryo Today. 2009 Mar;87(1):1-26
pubmed: 19306346
FEBS J. 2009 Nov;276(22):6658-68
pubmed: 19843185
Science. 2010 Apr 2;328(5974):62-7
pubmed: 20299552
Proc Natl Acad Sci U S A. 2010 Jul 13;107(28):12570-5
pubmed: 20616016
Cell. 2010 Aug 6;142(3):468-79
pubmed: 20691905
Biol Reprod. 2011 Mar;84(3):435-9
pubmed: 20980688
PLoS One. 2011 Feb 17;6(2):e16992
pubmed: 21423341
Biol Reprod. 2012 May 03;86(5):139, 1-11
pubmed: 22378758
Cereb Cortex. 2013 Aug;23(8):1824-35
pubmed: 22705452
Science. 2012 Dec 21;338(6114):1593-9
pubmed: 23258891
Cell Rep. 2013 Jun 27;3(6):2179-90
pubmed: 23791531
Biol Reprod. 2013 Aug 29;89(2):47
pubmed: 23843236
Nucleic Acids Res. 2013 Dec;41(22):10170-84
pubmed: 24038356
Cell Rep. 2013 Oct 31;5(2):357-66
pubmed: 24139801
J Biol Chem. 2014 Feb 7;289(6):3799-810
pubmed: 24371141
BMC Genomics. 2014 Jan 18;15:39
pubmed: 24438502
Elife. 2014;3:e01201
pubmed: 24448406
PLoS One. 2014 Apr 17;9(4):e95210
pubmed: 24743263
Cell Stem Cell. 2014 May 1;14(5):658-72
pubmed: 24792118
Nucleic Acids Res. 2014 Oct 29;42(19):12070-81
pubmed: 25294838
Cancer Lett. 2015 Jul 10;363(1):17-27
pubmed: 25818238
Mol Cell Biol. 2015 Dec;35(23):4030-42
pubmed: 26391954
J Histochem Cytochem. 2016 Feb;64(2):112-24
pubmed: 26392518
Elife. 2016 Jan 08;5:null
pubmed: 26744779
Histopathology. 2016 Sep;69(3):406-22
pubmed: 26802460
Exp Anim. 2016 Jul 29;65(3):231-44
pubmed: 26923756
Biol Reprod. 2016 Apr;94(4):92
pubmed: 26984996
Cell. 2016 Aug 25;166(5):1147-1162.e15
pubmed: 27565344
Cell Rep. 2016 Dec 6;17(10):2766-2775
pubmed: 27926877
Cell Rep. 2017 Jun 20;19(12):2598-2612
pubmed: 28636946
Nature. 2017 Nov 2;551(7678):100-104
pubmed: 29072293
Mech Dev. 2018 Feb;149:27-40
pubmed: 29339164
Nat Immunol. 2018 Mar;19(3):267-278
pubmed: 29358707