Alternative RNA splicing of the GIT1 gene is associated with neuroendocrine prostate cancer.
Adaptor Proteins, Signal Transducing
/ genetics
Alternative Splicing
Carcinoma, Neuroendocrine
/ genetics
Cell Cycle Proteins
/ genetics
Cell Line, Tumor
Focal Adhesions
/ genetics
Gene Expression Profiling
Gene Expression Regulation, Neoplastic
Gene Ontology
Genetic Predisposition to Disease
/ genetics
Humans
Male
Nerve Tissue Proteins
/ genetics
PC-3 Cells
Prostatic Neoplasms
/ genetics
Protein Isoforms
/ genetics
GIT1
SRRM4
alternative RNA splicing
castration resistant
neuroendocrine prostate cancer
Journal
Cancer science
ISSN: 1349-7006
Titre abrégé: Cancer Sci
Pays: England
ID NLM: 101168776
Informations de publication
Date de publication:
Jan 2019
Jan 2019
Historique:
received:
26
09
2018
revised:
29
10
2018
accepted:
05
11
2018
pubmed:
13
11
2018
medline:
15
1
2019
entrez:
13
11
2018
Statut:
ppublish
Résumé
Potent androgen receptor pathway inhibition (ARPI) therapies have given rise to a lethal, aggressive subtype of castration-resistant prostate cancer (CRPC) called treatment-induced neuroendocrine prostate cancer (t-NEPC). Now, t-NEPC poses a major clinical problem as approximately 20% of CRPC cases bear this subtype-a rate of occurrence that is predicted to rise with the widespread use of ARPI therapies. Unfortunately, there are no targeted therapies currently available to treat t-NEPC as the origin and molecular underpinnings of t-NEPC development remain unclear. In the present study, we identify that RNA splicing of the G protein-coupled receptor kinase-interacting protein 1 (GIT1) gene is a unique event in t-NEPC patients. Specifically, upregulation of the GIT1-A splice variant and downregulation of the GIT1-C variant expressions are associated with t-NEPC patient tumors, patient-derived xenografts, and cell models. RNA-binding assays show that RNA splicing of GIT1 is directly driven by SRRM4 and is associated with the neuroendocrine phenotype in CRPC cohorts. We show that GIT1-A and GIT1-C regulate differential transcriptomes in prostate cancer cells, where GIT1-A regulates genes associated with morphogenesis, neural function, environmental sensing via cell-adhesion processes, and epigenetic regulation. Consistent with our transcriptomic analyses, we report opposing functions of GIT1-A and GIT1-C in the stability of focal adhesions, whereby GIT1-A promotes focal adhesion stability. In summary, our study is the first to report that alternative RNA splicing of the GIT1 gene is associated with t-NEPC and reprograms its function involving FA-mediated signaling and cell processes, which may contribute to t-NEPC development.
Identifiants
pubmed: 30417466
doi: 10.1111/cas.13869
pmc: PMC6317919
doi:
Substances chimiques
Adaptor Proteins, Signal Transducing
0
Cell Cycle Proteins
0
GIT1 protein, human
0
Nerve Tissue Proteins
0
Protein Isoforms
0
SRRM4 protein, human
0
Banques de données
GENBANK
['NM_001085454.1', 'NM_014030.3']
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
245-255Subventions
Organisme : Canadian Institutes of Health Research
ID : MOP137007
Pays : Canada
Organisme : Canadian Institutes of Health Research
ID : PTJ156150
Pays : Canada
Informations de copyright
© 2018 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.
Références
Nat Rev Urol. 2018 May;15(5):271-286
pubmed: 29460922
J Cell Physiol. 2017 Apr;232(4):852-861
pubmed: 27430900
BMC Genomics. 2015 Dec 16;16:1069
pubmed: 26673413
J Neurosci. 2005 Mar 30;25(13):3379-88
pubmed: 15800193
J Cell Sci. 2016 May 15;129(10):1963-74
pubmed: 27182061
Oncotarget. 2017 Apr 25;8(17):27966-27975
pubmed: 28427194
J Clin Endocrinol Metab. 2013 Jul;98(7):2887-96
pubmed: 23666965
Mol Cancer Res. 2013 Oct;11(10):1258-68
pubmed: 23928058
Cancer Discov. 2011 Nov;1(6):487-95
pubmed: 22389870
Neuron. 2001 Nov 8;32(3):415-24
pubmed: 11709153
Oncogenesis. 2018 Jan 24;7(1):10
pubmed: 29362402
Science. 2018 Oct 5;362(6410):91-95
pubmed: 30287662
Gigascience. 2018 Jun 1;7(6):
pubmed: 29757368
Oncogene. 2014 Jun 12;33(24):3140-50
pubmed: 23851510
Int J Urol. 2018 Apr;25(4):345-351
pubmed: 29396873
Clin Cancer Res. 2016 Mar 15;22(6):1520-30
pubmed: 26546618
Cancer Res. 2014 Feb 15;74(4):1272-83
pubmed: 24356420
Eur Urol. 2017 Jan;71(1):68-78
pubmed: 27180064
J Pathol. 2012 Jul;227(3):286-97
pubmed: 22553170
Oncotarget. 2017 Aug 3;8(40):66878-66888
pubmed: 28978002
Front Oncol. 2018 Apr 03;8:93
pubmed: 29666783
EBioMedicine. 2018 May;31:267-275
pubmed: 29759485
EBioMedicine. 2018 Sep;35:167-177
pubmed: 30100395
Nat Rev Mol Cell Biol. 2009 Jan;10(1):21-33
pubmed: 19197329
Oncotarget. 2017 Jul 19;8(49):84863-84876
pubmed: 29156689
Cancer Sci. 2019 Jan;110(1):245-255
pubmed: 30417466
Nat Med. 2016 Mar;22(3):298-305
pubmed: 26855148
Clin Cancer Res. 2015 Oct 15;21(20):4698-708
pubmed: 26071481
Cancer Cell. 2017 Oct 9;32(4):474-489.e6
pubmed: 29017058