Ultraflexible Nanowire Array for Label- and Distortion-Free Cellular Force Tracking.


Journal

Nano letters
ISSN: 1530-6992
Titre abrégé: Nano Lett
Pays: United States
ID NLM: 101088070

Informations de publication

Date de publication:
10 04 2019
Historique:
pubmed: 15 11 2018
medline: 2 8 2019
entrez: 15 11 2018
Statut: ppublish

Résumé

Living cells interact with their immediate environment by exerting mechanical forces, which regulate important cell functions. Elucidation of such force patterns yields deep insights into the physics of life. Here we present a top-down nanostructured, ultraflexible nanowire array biosensor capable of probing cell-induced forces. Its universal building block, an inverted conical semiconductor nanowire, greatly enhances both the functionality and the sensitivity of the device. In contrast to existing cellular force sensing architectures, microscopy is performed on the nanowire heads while cells deflecting the nanowires are confined within the array. This separation between the optical path and the cells under investigation excludes optical distortions caused by cell-induced refraction, which can give rise to feigned displacements on the 100 nm scale. The undistorted nanowire displacements are converted into cellular forces via the nanowire spring constant. The resulting distortion-free cellular force transducer realizes a high-resolution and label-free biosenor based on optical microscopy. Its performance is demonstrated in a proof-of-principle experiment with living Dictyostelium discoideum cells migrating through the nanowire array. Cell-induced forces are probed with a resolution of 50 piconewton, while the most flexible nanowires promise to enter the 100 femtonewton realm.

Identifiants

pubmed: 30427688
doi: 10.1021/acs.nanolett.8b02568
doi:

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Pagination

2207-2214

Auteurs

P Paulitschke (P)

Center for NanoScience & Faculty of Physics , Ludwig-Maximilians-Universität München , Geschwister-Scholl-Platz 1 , 80539 München , Germany.

F Keber (F)

Center for NanoScience & Faculty of Physics , Ludwig-Maximilians-Universität München , Geschwister-Scholl-Platz 1 , 80539 München , Germany.

A Lebedev (A)

Center for NanoScience & Faculty of Physics , Ludwig-Maximilians-Universität München , Geschwister-Scholl-Platz 1 , 80539 München , Germany.

J Stephan (J)

Center for NanoScience & Faculty of Physics , Ludwig-Maximilians-Universität München , Geschwister-Scholl-Platz 1 , 80539 München , Germany.

H Lorenz (H)

Center for NanoScience & Faculty of Physics , Ludwig-Maximilians-Universität München , Geschwister-Scholl-Platz 1 , 80539 München , Germany.

S Hasselmann (S)

Fraunhofer Institute for Silicate Research (ISC) , Neunerplatz 2 , 97082 Würzburg , Germany.

D Heinrich (D)

Center for NanoScience & Faculty of Physics , Ludwig-Maximilians-Universität München , Geschwister-Scholl-Platz 1 , 80539 München , Germany.
Fraunhofer Institute for Silicate Research (ISC) , Neunerplatz 2 , 97082 Würzburg , Germany.
Leiden Institute of Physics , Leiden University , 2333 Leiden , The Netherlands.

E M Weig (EM)

Center for NanoScience & Faculty of Physics , Ludwig-Maximilians-Universität München , Geschwister-Scholl-Platz 1 , 80539 München , Germany.
Department of Physics , Universität Konstanz , 78457 Konstanz , Germany.

Articles similaires

Semiconductors Photosynthesis Polymers Carbon Dioxide Bacteria
Microscopy Humans Artificial Intelligence Primary Health Care
Malaria, Vivax Peru Humans Recurrence Female

Harnessing quantum light for microscopic biomechanical imaging of cells and tissues.

Tian Li, Vsevolod Cheburkanov, Vladislav V Yakovlev et al.
1.00
Animals Humans Biomechanical Phenomena Light Microscopy

Classifications MeSH