Characterization of the dynamic changes in left ventricular morphology and function induced by exercise training and detraining.
Circumferential strain
Development of physiological hypertrophy
Regression of physiological hypertrophy
Speckle-tracking echocardiography
athlete's heart
Journal
International journal of cardiology
ISSN: 1874-1754
Titre abrégé: Int J Cardiol
Pays: Netherlands
ID NLM: 8200291
Informations de publication
Date de publication:
15 Feb 2019
15 Feb 2019
Historique:
received:
01
02
2018
revised:
06
07
2018
accepted:
26
10
2018
pubmed:
18
11
2018
medline:
4
9
2019
entrez:
17
11
2018
Statut:
ppublish
Résumé
Although exercise-induced cardiac hypertrophy has been intensively investigated, its development and regression dynamics have not been comprehensively described. In the current study, we aimed to characterize the effects of regular exercise training and detraining on left ventricular (LV) morphology and function. Rats were divided into exercised (n = 12) and control (n = 12) groups. Exercised rats swam 200 min/day for 12 weeks. After completion of the training protocol, rats remained sedentary for 8 weeks (detraining period). Echocardiographic follow-up was performed regularly to obtain LV long- and short-axis recordings for speckle-tracking echocardiography analysis. Global longitudinal and circumferential strain and systolic strain rate were measured. LV pressure-volume analysis was performed using additional groups of rats to obtain haemodynamic data. Echocardiographic examinations showed the development of LV hypertrophy in the exercised group. These differences disappeared during the detraining period. Strain and strain rate values were all increased after the training period, whereas supernormal values rapidly reversed to the control level after training cessation. Load-independent haemodynamic indices, e.g., preload recruitable stroke work, confirmed the exercise-induced systolic improvement and complete regression after detraining. Our results provide the first comprehensive data to describe the development and regression dynamics of morphological and functional aspects of physiological hypertrophy in detail. Speckle-tracking echocardiography has been proven to be feasible to follow-up changes induced by exercise training and detraining and might provide an early possibility to differentiate between physiological and pathological conditions.
Sections du résumé
BACKGROUND
BACKGROUND
Although exercise-induced cardiac hypertrophy has been intensively investigated, its development and regression dynamics have not been comprehensively described. In the current study, we aimed to characterize the effects of regular exercise training and detraining on left ventricular (LV) morphology and function.
METHODS
METHODS
Rats were divided into exercised (n = 12) and control (n = 12) groups. Exercised rats swam 200 min/day for 12 weeks. After completion of the training protocol, rats remained sedentary for 8 weeks (detraining period). Echocardiographic follow-up was performed regularly to obtain LV long- and short-axis recordings for speckle-tracking echocardiography analysis. Global longitudinal and circumferential strain and systolic strain rate were measured. LV pressure-volume analysis was performed using additional groups of rats to obtain haemodynamic data.
RESULTS
RESULTS
Echocardiographic examinations showed the development of LV hypertrophy in the exercised group. These differences disappeared during the detraining period. Strain and strain rate values were all increased after the training period, whereas supernormal values rapidly reversed to the control level after training cessation. Load-independent haemodynamic indices, e.g., preload recruitable stroke work, confirmed the exercise-induced systolic improvement and complete regression after detraining.
CONCLUSIONS AND TRANSLATIONAL ASPECT
UNASSIGNED
Our results provide the first comprehensive data to describe the development and regression dynamics of morphological and functional aspects of physiological hypertrophy in detail. Speckle-tracking echocardiography has been proven to be feasible to follow-up changes induced by exercise training and detraining and might provide an early possibility to differentiate between physiological and pathological conditions.
Identifiants
pubmed: 30442376
pii: S0167-5273(18)30741-1
doi: 10.1016/j.ijcard.2018.10.092
pii:
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
178-185Informations de copyright
Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.