Selective colonization ability of human fecal microbes in different mouse gut environments.


Journal

The ISME journal
ISSN: 1751-7370
Titre abrégé: ISME J
Pays: England
ID NLM: 101301086

Informations de publication

Date de publication:
03 2019
Historique:
received: 10 04 2018
accepted: 16 10 2018
revised: 10 10 2018
pubmed: 18 11 2018
medline: 7 8 2019
entrez: 17 11 2018
Statut: ppublish

Résumé

Mammalian hosts constantly interact with diverse exogenous microbes, but only a subset of the microbes manage to colonize due to selective colonization resistance exerted by host genetic factors as well as the native microbiota of the host. An important question in microbial ecology and medical science is if such colonization resistance can discriminate closely related microbial species, or even closely related strains of the same species. Using human-mouse fecal microbiota transplantation and metagenomic shotgun sequencing, we reconstructed colonization patterns of human fecal microbes in mice with different genotypes (C57BL6/J vs. NSG) and with or without an intact gut microbiota. We found that mouse genotypes and the native mouse gut microbiota both exerted different selective pressures on exogenous colonizers: human fecal Bacteroides successfully established in the mice gut, however, different species of Bacteroides selectively enriched under different gut conditions, potentially due to a multitude of functional differences, ranging from versatility in nutrient acquisition to stress responses. Additionally, different clades of Bacteroides cellulosilyticus strains were selectively enriched in different gut conditions, suggesting that the fitness of conspecific microbial strains in a novel host environment could differ.

Identifiants

pubmed: 30442907
doi: 10.1038/s41396-018-0312-9
pii: 10.1038/s41396-018-0312-9
pmc: PMC6461746
doi:

Types de publication

Journal Article Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't

Langues

eng

Pagination

805-823

Subventions

Organisme : NIGMS NIH HHS
ID : DP2 GM126893
Pays : United States
Organisme : NIAID NIH HHS
ID : K22 AI119231
Pays : United States
Organisme : U.S. Department of Health & Human Services | National Institutes of Health (NIH)
ID : 1 DP2 GM126893-01
Pays : International

Commentaires et corrections

Type : ErratumIn

Références

Hibbing ME, Fuqua C, Parsek MR, Peterson SB. Bacterial competition: surviving and thriving in the microbial jungle. Nat Rev Microbiol. 2010;8:15–25.
pubmed: 19946288 pmcid: 2879262 doi: 10.1038/nrmicro2259
Sung J, Kim S, Cabatbat JJT, Jang S, Jin YS, Jung GY, et al. Global metabolic interaction network of the human gut microbiota for context-specific community-scale analysis. Nat Commun. 2017;8:15393.
pubmed: 28585563 pmcid: 5467172 doi: 10.1038/ncomms15393
Little AE, Robinson CJ, Peterson SB, Raffa KF, Handelsman J. Rules of engagement: interspecies interactions that regulate microbial communities. Annu Rev Microbiol. 2008;62:375–401.
pubmed: 18544040 doi: 10.1146/annurev.micro.030608.101423
Koropatkin NM, Cameron EA, Martens EC. How glycan metabolism shapes the human gut microbiota. Nat Rev Microbiol. 2012;10:323–35.
pubmed: 22491358 pmcid: 4005082 doi: 10.1038/nrmicro2746
Dostal A, Chassard C, Hilty FM, Zimmermann MB, Jaeggi T, Rossi S, et al. Iron depletion and repletion with ferrous sulfate or electrolytic iron modifies the composition and metabolic activity of the gut microbiota in rats. J Nutr. 2012;142:271–7.
doi: 10.3945/jn.111.148643 pubmed: 22190022
Buffie CG, Pamer EG. Microbiota-mediated colonization resistance against intestinal pathogens. Nat Rev Immunol. 2013;13:790–801.
pubmed: 24096337 pmcid: 4194195 doi: 10.1038/nri3535
Fisher CK, Mora T, Walczak AM. Variable habitat conditions drive species covariation in the human microbiota. PLoS Comput Biol. 2017;13:e1005435.
pubmed: 28448493 pmcid: 5407567 doi: 10.1371/journal.pcbi.1005435
Stecher B, Berry D, Loy A. Colonization resistance and microbial ecophysiology: using gnotobiotic mouse models and single-cell technology to explore the intestinal jungle. FEMS Microbiol Rev. 2013;37:793–829.
pubmed: 23662775 doi: 10.1111/1574-6976.12024
Sharon I, Morowitz MJ, Thomas BC, Costello EK, Relman DA, Banfield JF. Time series community genomics analysis reveals rapid shifts in bacterial species, strains, and phage during infant gut colonization. Genome Res. 2013;23:111–20.
pubmed: 22936250 pmcid: 3530670 doi: 10.1101/gr.142315.112
Li SS, Zhu A, Benes V, Costea PI, Hercog R, Hildebrand F, et al. Durable coexistence of donor and recipient strains after fecal microbiota transplantation. Science. 2016;352:586–9.
pubmed: 27126044 doi: 10.1126/science.aad8852
Smillie CS, Sauk J, Gevers D, Friedman J, Sung J, Youngster I, et al. Strain Tracking Reveals the Determinants of Bacterial Engraftment in the Human Gut Following Fecal Microbiota Transplantation. Cell Host Microbe. 2018;23:229–40.
pubmed: 29447696 doi: 10.1016/j.chom.2018.01.003 pmcid: 8318347
Staley C, Kaiser T, Beura LK, Hamilton MJ, Weingarden AR, Bobr A, et al. Stable engraftment of human microbiota into mice with a single oral gavage following antibiotic conditioning. Microbiome. 2017;5:87.
pubmed: 28760163 pmcid: 5537947 doi: 10.1186/s40168-017-0306-2
Seedorf H, Griffin NW, Ridaura VK, Reyes A, Cheng J, Rey FE, et al. Bacteria from diverse habitats colonize and compete in the mouse gut. Cell. 2014;159:253–66.
pubmed: 25284151 pmcid: 4194163 doi: 10.1016/j.cell.2014.09.008
Mushin R, Dubos R. Colonization of the mouse intestine with Escherichia coli. J Exp Med. 1965;122:745–57.
pubmed: 5321603 pmcid: 2138088 doi: 10.1084/jem.122.4.745
Freter R, Abrams GD. Function of various intestinal bacteria in converting germfree mice to the normal state. Infect Immun. 1972;6:119–26.
pubmed: 4631910 pmcid: 422503 doi: 10.1128/iai.6.2.119-126.1972
Chang C, Miller JF. Campylobacter jejuni colonization of mice with limited enteric flora. Infect Immun. 2006;74:5261–71.
pubmed: 16926420 pmcid: 1594848 doi: 10.1128/IAI.01094-05
Ross CL, Spinler JK, Savidge TC. Structural and functional changes within the gut microbiota and susceptibility to Clostridium difficile infection. Anaerobe. 2016;41:37–43.
pubmed: 27180006 pmcid: 5050078 doi: 10.1016/j.anaerobe.2016.05.006
Seekatz AM, Young VB. Clostridium difficile and the microbiota. J Clin Invest. 2014;124:4182–9.
pubmed: 25036699 pmcid: 4191019 doi: 10.1172/JCI72336
Zipperer A, Konnerth MC, Laux C, Berscheid A, Janek D, Weidenmaier C, et al. Human commensals producing a novel antibiotic impair pathogen colonization. Nature. 2016;535:511–516.
pubmed: 27466123 doi: 10.1038/nature18634
Mota-Meira M, LaPointe G, Lacroix C, Lavoie MC. MICs of mutacin B-Ny266, nisin A, vancomycin, and oxacillin against bacterial pathogens. Antimicrob Agents Chemother. 2000;44:24–29.
pubmed: 10602718 pmcid: 89623 doi: 10.1128/AAC.44.1.24-29.2000
Rea MC, Sit CS, Clayton E, O’Connor PM, Whittal RM, Zheng J, et al. Thuricin CD, a posttranslationally modified bacteriocin with a narrow spectrum of activity against Clostridium difficile. Proc Natl Acad Sci USA. 2010;107:9352–7.
pubmed: 20435915 doi: 10.1073/pnas.0913554107 pmcid: 2889069
Wong M, Liang X, Smart M, Tang L, Moore R, Ingalls B, et al. Microbial herd protection mediated by antagonistic interaction in polymicrobial communities. Appl Environ Microbiol. 2016;82:6881-6888.
Reddinger RM, Luke-Marshall NR, Sauberan SL, Hakansson AP, Campagnari AA. Streptococcus pneumoniae modulates Staphylococcus aureus biofilm dispersion and the transition from colonization to invasive disease. MBio. 2018;9:e02089-17.
Benson AK, Kelly SA, Legge R, Ma F, Low SJ, Kim J, et al. Individuality in gut microbiota composition is a complex polygenic trait shaped by multiple environmental and host genetic factors. Proc Natl Acad Sci USA. 2010;107:18933–8.
pubmed: 20937875 doi: 10.1073/pnas.1007028107 pmcid: 2973891
Esworthy RS, Smith DD, Chu FF. A strong impact of genetic background on gut microflora in mice. Int J Inflam. 2010;2010:986046.
pubmed: 20976020 pmcid: 2957666
Vaahtovuo J, Toivanen P, Eerola E. Bacterial composition of murine fecal microflora is indigenous and genetically guided. FEMS Microbiol Ecol. 2003;44:131–6.
pubmed: 19719658 doi: 10.1016/S0168-6496(02)00460-9
Lawley TD, Walker AW. Intestinal colonization resistance. Immunology. 2013;138:1–11.
pubmed: 23240815 doi: 10.1111/j.1365-2567.2012.03616.x
Vieira G, Sabarly V, Bourguignon PY, Durot M, Le Fevre F, Mornico D, et al. Core and panmetabolism in. Escherichia coli J Bacteriol. 2011;193:1461–72.
pubmed: 21239590
Moriel DG, Rosini R, Seib KL, Serino L, Pizza M, Rappuoli R. Escherichia coli: great diversity around a common core. MBio. 2012;3:e00118–12.
pubmed: 22669628 pmcid: 3374390 doi: 10.1128/mBio.00118-12
Asnicar F, Manara S, Zolfo M, Truong DT, Scholz M, Armanini F, et al. Studying vertical microbiome transmission from mothers to infants by strain-level metagenomic profiling. mSystems. 2017;2:e00164–16.
pubmed: 28144631 pmcid: 5264247 doi: 10.1128/mSystems.00164-16
Scholz M, Ward DV, Pasolli E, Tolio T, Zolfo M, Asnicar F, et al. Strain-level microbial epidemiology and population genomics from shotgun metagenomics. Nat Methods. 2016;13:435–8.
pubmed: 26999001 doi: 10.1038/nmeth.3802
Truong DT, Tett A, Pasolli E, Huttenhower C, Segata N. Microbial strain-level population structure and genetic diversity from metagenomes. Genome Res. 2017;27:626–38.
pubmed: 28167665 pmcid: 5378180 doi: 10.1101/gr.216242.116
Turner S, Pryer KM, Miao VP, Palmer JD. Investigating deep phylogenetic relationships among cyanobacteria and plastids by small subunit rRNA sequence analysis. J Eukaryot Microbiol. 1999;46:327–38.
pubmed: 10461381 doi: 10.1111/j.1550-7408.1999.tb04612.x
Magoc T, Salzberg SL. FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics. 2011;27:2957–63.
pubmed: 21903629 pmcid: 3198573 doi: 10.1093/bioinformatics/btr507
Buffalo V. Scythe - A Bayesian adapter trimmer [software]. https://github.com/vsbuffalo/scythe ; 2011.
Joshi NAF, J.N. Sickle: A sliding-window, adaptive, quality-based trimming tool for FastQ files [Software]. https://github.com/najoshi/sickle ; 2011.
Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9:357–9.
pubmed: 22388286 pmcid: 3322381 doi: 10.1038/nmeth.1923
Li D, Liu CM, Luo R, Sadakane K, Lam TW. MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics. 2015;31:1674–6.
pubmed: 25609793 doi: 10.1093/bioinformatics/btv033
Li D, Luo R, Liu CM, Leung CM, Ting HF, Sadakane K. et al. MEGAHITv1.0: a fast and scalable metagenome assembler driven by advanced methodologies and community practices. Methods. 2016;102:3–11.
pubmed: 27012178 doi: 10.1016/j.ymeth.2016.02.020
Kang DD, Froula J, Egan R, Wang Z. MetaBAT, an efficient tool for accurately reconstructing single genomes from complex microbial communities. PeerJ. 2015;3:e1165
pubmed: 26336640 pmcid: 4556158 doi: 10.7717/peerj.1165
Simao FA, Waterhouse RM, Ioannidis P, Kriventseva EV, Zdobnov EM. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics. 2015;31:3210–2.
pubmed: 26059717 doi: 10.1093/bioinformatics/btv351
Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 2015;25:1043–55.
pubmed: 25977477 pmcid: 4484387 doi: 10.1101/gr.186072.114
Wood DE, Salzberg SL. Kraken: ultrafast metagenomic sequence classification using exact alignments. Genome Biol. 2014;15:R46.
pubmed: 24580807 pmcid: 4053813 doi: 10.1186/gb-2014-15-3-r46
Rognes T, Flouri T, Nichols B, Quince C, Mahe F. VSEARCH: a versatile open source tool for metagenomics. PeerJ. 2016;4:e2584.
pubmed: 27781170 pmcid: 5075697 doi: 10.7717/peerj.2584
Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2013;41:D590–6.
pubmed: 23193283 doi: 10.1093/nar/gks1219
Yilmaz P, Parfrey LW, Yarza P, Gerken J, Pruesse E, Quast C, et al. The SILVA and “all-species Living Tree Project (LTP)” taxonomic frameworks. Nucleic Acids Res. 2014;42:D643–8.
pubmed: 24293649 doi: 10.1093/nar/gkt1209
Glockner FO, Yilmaz P, Quast C, Gerken J, Beccati A, Ciuprina A, et al. 25 years of serving the community with ribosomal RNA gene reference databases and tools. J Biotechnol. 2017;261:169–76.
pubmed: 28648396 doi: 10.1016/j.jbiotec.2017.06.1198
Segata N, Waldron L, Ballarini A, Narasimhan V, Jousson O, Huttenhower C. Metagenomic microbial community profiling using unique clade-specific marker genes. Nat Methods. 2012;9:811–4.
pubmed: 22688413 pmcid: 3443552 doi: 10.1038/nmeth.2066
Hong C, Manimaran S, Shen Y, Perez-Rogers JF, Byrd AL, Castro-Nallar E, et al. PathoScope 2.0: a complete computational framework for strain identification in environmental or clinical sequencing samples. Microbiome. 2014;2:33.
pubmed: 25225611 pmcid: 4164323 doi: 10.1186/2049-2618-2-33
Zhou W, Gay N, Oh J. ReprDB and panDB: minimalist databases with maximal microbial representation. Microbiome. 2018;6:15.
pubmed: 29347966 pmcid: 5774170 doi: 10.1186/s40168-018-0399-2
Knights D, Kuczynski J, Charlson ES, Zaneveld J, Mozer MC, Collman RG, et al. Bayesian community-wide culture-independent microbial source tracking. Nat Methods. 2011;8:761–3.
pubmed: 21765408 pmcid: 3791591 doi: 10.1038/nmeth.1650
Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett WS, et al. Metagenomic biomarker discovery and explanation. Genome Biol. 2011;12:R60.
pubmed: 21702898 pmcid: 3218848 doi: 10.1186/gb-2011-12-6-r60
Hyatt D, Chen GL, Locascio PF, Land ML, Larimer FW, Hauser LJ. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinforma. 2010;11:119.
doi: 10.1186/1471-2105-11-119
Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000;28:27–30.
pubmed: 10592173 pmcid: 102409 doi: 10.1093/nar/28.1.27
Ogata H, Goto S, Sato K, Fujibuchi W, Bono H, Kanehisa M. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 1999;27:29–34.
pubmed: 9847135 pmcid: 148090 doi: 10.1093/nar/27.1.29
Xiao L, Feng Q, Liang S, Sonne SB, Xia Z, Qiu X, et al. A catalog of the mouse gut metagenome. Nat Biotechnol. 2015;33:1103–8.
pubmed: 26414350 doi: 10.1038/nbt.3353
Li H. A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. Bioinformatics. 2011;27:2987–93.
pubmed: 21903627 pmcid: 3198575 doi: 10.1093/bioinformatics/btr509
Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The sequence alignment/Map format and SAMtools. Bioinformatics. 2009;25:2078–9.
pubmed: 19505943 pmcid: 2723002 doi: 10.1093/bioinformatics/btp352
Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550.
pubmed: 25516281 pmcid: 4302049 doi: 10.1186/s13059-014-0550-8
Jonsson V, Osterlund T, Nerman O, Kristiansson E. Statistical evaluation of methods for identification of differentially abundant genes in comparative metagenomics. BMC Genom. 2016;17:78.
doi: 10.1186/s12864-016-2386-y
Luo W, Friedman MS, Shedden K, Hankenson KD, Woolf PJ. GAGE: generally applicable gene set enrichment for pathway analysis. BMC Bioinforma. 2009;10:161.
doi: 10.1186/1471-2105-10-161
Luo W, Brouwer C. Pathview: an R/Bioconductor package for pathway-based data integration and visualization. Bioinformatics. 2013;29:1830–1.
pubmed: 23740750 pmcid: 3702256 doi: 10.1093/bioinformatics/btt285
Luo W. RNA-Seq data pathway and gene-set analysis workflows [Web tutorial]. [ https://bioconductor.org/packages/3.7/bioc/vignettes/gage/inst/doc/RNA-seqWorkflow.pdf ].
Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, et al. vegan: Community Ecology Package (R package version 2.4-6). https://CRAN.R-project.org/package=vegan ; 2018.
Lloyd-Price J, Mahurkar A, Rahnavard G, Crabtree J, Orvis J, Hall AB, et al. Strains, functions and dynamics in the expanded Human Microbiome Project. Nature. 2017;550:61–66.
pubmed: 28953883 pmcid: 5831082 doi: 10.1038/nature23889
O’Donnell MM, Harris HM, Lynch DB, Ross RP, O’Toole PW. Lactobacillus ruminis strains cluster according to their mammalian gut source. BMC Microbiol. 2015;15:80.
doi: 10.1186/s12866-015-0403-y
Degnan PH, Taga ME, Goodman AL. Vitamin B12 as a modulator of gut microbial ecology. Cell Metab. 2014;20:769–78.
pubmed: 25440056 pmcid: 4260394 doi: 10.1016/j.cmet.2014.10.002
Frank SA. Receptor uptake arrays for vitamin B12, siderophores, and glycans shape bacterial communities. Ecol Evol. 2017;7:10175–95.
pubmed: 29238546 pmcid: 5723603 doi: 10.1002/ece3.3544
Wang X, Wood TK. Toxin-antitoxin systems influence biofilm and persister cell formation and the general stress response. Appl Environ Microbiol. 2011;77:5577–83.
pubmed: 21685157 pmcid: 3165247 doi: 10.1128/AEM.05068-11
Slobodkin LB. Growth and regulation of animal populations. Science. 1961;134:1.
Janzen DH. On ecological fitting. Oikos. 1985;45:3.
doi: 10.2307/3565565
Lane JP, Stewart CJ, Cummings SP, Gennery AR. Gut microbiome variations during hematopoietic stem cell transplant in severe combined immunodeficiency. J Allergy Clin Immunol. 2015;135:1654–6.
pubmed: 25769913 doi: 10.1016/j.jaci.2015.01.024
Selvanantham T, Lin Q, Guo CX, Surendra A, Fieve S, Escalante NK, et al. NKT cell-deficient mice harbor an altered microbiota that fuels intestinal inflammation during chemically induced colitis. J Immunol. 2016;197:4464–72.
pubmed: 27799307 doi: 10.4049/jimmunol.1601410
Berbers RM, Nierkens S, van Laar JM, Bogaert D, Leavis HL. Microbial dysbiosis in common variable immune deficiencies: evidence, causes, and consequences. Trends Immunol. 2017;38:206–16.
pubmed: 28017520 doi: 10.1016/j.it.2016.11.008
Knoop KA, McDonald KG, Kulkarni DH, Newberry RD. Antibiotics promote inflammation through the translocation of native commensal colonic bacteria. Gut. 2016;65:1100–9.
pubmed: 26045138 doi: 10.1136/gutjnl-2014-309059
Myhal ML, Laux DC, Cohen PS. Relative colonizing abilities of human fecal and K 12 strains of Escherichia coli in the large intestines of streptomycin-treated mice. Eur J Clin Microbiol. 1982;1:186–92.
pubmed: 6756909 doi: 10.1007/BF02019621
Hanel I, Muller J, Muller W, Schulze F. Correlation between invasion of Caco-2 eukaryotic cells and colonization ability in the chick gut in Campylobacter jejuni. Vet Microbiol. 2004;101:75–82.
pubmed: 15172689 doi: 10.1016/j.vetmic.2004.04.004
Oh J, Byrd AL, Deming C, Conlan S, Program NCS, Kong HH, et al. Biogeography and individuality shape function in the human skin metagenome. Nature. 2014;514:59–64.
pubmed: 25279917 pmcid: 4185404 doi: 10.1038/nature13786
Oh J, Byrd AL, Park M, Program NCS, Kong HH, Segre JA. Temporal Stability of the Human Skin Microbiome. Cell. 2016;165:854–66.
pubmed: 27153496 pmcid: 4860256 doi: 10.1016/j.cell.2016.04.008
Kraal L, Abubucker S, Kota K, Fischbach MA, Mitreva M. The prevalence of species and strains in the human microbiome: a resource for experimental efforts. PLoS ONE. 2014;9:e97279.
pubmed: 24827833 pmcid: 4020798 doi: 10.1371/journal.pone.0097279
Neff CP, Rhodes ME, Arnolds KL, Collins CB, Donnelly J, Nusbacher N, et al. Diverse intestinal bacteria contain putative zwitterionic capsular polysaccharides with anti-inflammatory properties. Cell Host Microbe. 2016;20:535–47.
pubmed: 27693306 pmcid: 5113727 doi: 10.1016/j.chom.2016.09.002
Ferretti P, Pasolli E, Tett A, Asnicar F, Gorfer V, Fedi S, et al. Mother-to-infant microbial transmission from different body sites shapes the developing infant gut microbiome. Cell Host Microbe. 2018;24:133–45.
pubmed: 30001516 pmcid: 6716579 doi: 10.1016/j.chom.2018.06.005
Magnusdottir S, Ravcheev D, de Crecy-Lagard V, Thiele I. Systematic genome assessment of B-vitamin biosynthesis suggests co-operation among gut microbes. Front Genet. 2015;6:148.
pubmed: 25941533 pmcid: 4403557 doi: 10.3389/fgene.2015.00148
Wu M, McNulty NP, Rodionov DA, Khoroshkin MS, Griffin NW, Cheng J, et al. Genetic determinants of in vivo fitness and diet responsiveness in multiple human gut Bacteroides. Science. 2015;350:aac5992.
pubmed: 26430127 pmcid: 4608238 doi: 10.1126/science.aac5992
Lagkouvardos I, Pukall R, Abt B, Foesel BU, Meier-Kolthoff JP, Kumar N, et al. The Mouse Intestinal Bacterial Collection (miBC) provides host-specific insight into cultured diversity and functional potential of the gut microbiota. Nat Microbiol. 2016;1:16131.
pubmed: 27670113 doi: 10.1038/nmicrobiol.2016.131
Clavel T, Lagkouvardos I, Blaut M, Stecher B. The mouse gut microbiome revisited: From complex diversity to model ecosystems. Int J Med Microbiol. 2016;306:316–27.
pubmed: 26995267 doi: 10.1016/j.ijmm.2016.03.002
Shin J, Lee S, Go MJ, Lee SY, Kim SC, Lee CH, et al. Analysis of the mouse gut microbiome using full-length 16S rRNA amplicon sequencing. Sci Rep. 2016;6:29681.
pubmed: 27411898 pmcid: 4944186 doi: 10.1038/srep29681

Auteurs

Wei Zhou (W)

The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA.

Kin-Hoe Chow (KH)

The Jackson Laboratory, Bar Harbor, ME, USA.

Elizabeth Fleming (E)

The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA.

Julia Oh (J)

The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA. julia.oh@jax.org.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH