GRNBoost2 and Arboreto: efficient and scalable inference of gene regulatory networks.


Journal

Bioinformatics (Oxford, England)
ISSN: 1367-4811
Titre abrégé: Bioinformatics
Pays: England
ID NLM: 9808944

Informations de publication

Date de publication:
01 06 2019
Historique:
received: 23 02 2018
revised: 05 09 2018
accepted: 14 11 2018
pubmed: 18 11 2018
medline: 12 6 2020
entrez: 17 11 2018
Statut: ppublish

Résumé

Inferring a Gene Regulatory Network (GRN) from gene expression data is a computationally expensive task, exacerbated by increasing data sizes due to advances in high-throughput gene profiling technology, such as single-cell RNA-seq. To equip researchers with a toolset to infer GRNs from large expression datasets, we propose GRNBoost2 and the Arboreto framework. GRNBoost2 is an efficient algorithm for regulatory network inference using gradient boosting, based on the GENIE3 architecture. Arboreto is a computational framework that scales up GRN inference algorithms complying with this architecture. Arboreto includes both GRNBoost2 and an improved implementation of GENIE3, as a user-friendly open source Python package. Arboreto is available under the 3-Clause BSD license at http://arboreto.readthedocs.io. Supplementary data are available at Bioinformatics online.

Identifiants

pubmed: 30445495
pii: 5184284
doi: 10.1093/bioinformatics/bty916
doi:

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

2159-2161

Informations de copyright

© The Author(s) 2018. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

Auteurs

Thomas Moerman (T)

KU Leuven ESAT/STADIUS, VDA-lab.
IMEC Smart Applications and Innovation Services.

Sara Aibar Santos (S)

Laboratory of Computational Biology, VIB Center for Brain & Disease Research.
Department of Human Genetics, KU Leuven, Leuven, Belgium.

Carmen Bravo González-Blas (C)

Laboratory of Computational Biology, VIB Center for Brain & Disease Research.
Department of Human Genetics, KU Leuven, Leuven, Belgium.

Jaak Simm (J)

IMEC Smart Applications and Innovation Services.
KU Leuven ESAT/STADIUS, Bioinformatics Lab.

Yves Moreau (Y)

IMEC Smart Applications and Innovation Services.
KU Leuven ESAT/STADIUS, Bioinformatics Lab.

Jan Aerts (J)

KU Leuven ESAT/STADIUS, VDA-lab.
IMEC Smart Applications and Innovation Services.

Stein Aerts (S)

Laboratory of Computational Biology, VIB Center for Brain & Disease Research.
Department of Human Genetics, KU Leuven, Leuven, Belgium.

Articles similaires

Selecting optimal software code descriptors-The case of Java.

Yegor Bugayenko, Zamira Kholmatova, Artem Kruglov et al.
1.00
Software Algorithms Programming Languages

Exploring blood-brain barrier passage using atomic weighted vector and machine learning.

Yoan Martínez-López, Paulina Phoobane, Yanaima Jauriga et al.
1.00
Blood-Brain Barrier Machine Learning Humans Support Vector Machine Software
1.00
Humans Magnetic Resonance Imaging Brain Infant, Newborn Infant, Premature
Cephalometry Humans Anatomic Landmarks Software Internet

Classifications MeSH