Circadian pacemaker neurons of the Madeira cockroach are inhibited and activated by GABA
GABA receptors
KCC2
NKCC1
chloride cotransporters
insect circadian rhythms
Journal
The European journal of neuroscience
ISSN: 1460-9568
Titre abrégé: Eur J Neurosci
Pays: France
ID NLM: 8918110
Informations de publication
Date de publication:
01 2020
01 2020
Historique:
received:
26
08
2018
accepted:
01
11
2018
pubmed:
18
11
2018
medline:
22
6
2021
entrez:
18
11
2018
Statut:
ppublish
Résumé
GABA is the most abundant neurotransmitter in the circadian pacemaker circuits of mammals and insects. In the Madeira cockroach the accessory medulla (AME) in the brain's optic lobes is the circadian clock that orchestrates rest-activity rhythms in synchrony with light dark cycles. Three prominent GABAergic tracts connect the AME to termination sites of compound eye photoreceptors in the lamina and medulla. Parallel GABAergic light entrainment pathways were suggested to either advance or delay the clock for adjustment to changing photoperiods. In agreement with this hypothesis GABA activated or inhibited AME clock neurons, allowing for the distinction of three different GABA response types. Here, we examined which GABA receptors are responsible for these response types. We found that both ionotropic GABA
Substances chimiques
Receptors, GABA-A
0
Receptors, GABA-B
0
gamma-Aminobutyric Acid
56-12-2
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
282-299Subventions
Organisme : Deutsche Forschungsgemeinschaft
ID : STE531/18-1,2,3
Pays : International
Organisme : DFG
ID : STE531/18-2,3
Pays : International
Informations de copyright
© 2018 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Références
Alamilla, J., Perez-Burgos, A., Quinto, D., & Aguilar-Roblero, R. (2014). Circadian modulation of the Cl− equilibrium potential in the rat suprachiasmatic nuclei. BioMed Research International, 2014, 1-15. https://doi.org/10.1155/2014/424982
Albers, H. E., Walton, J. C., Gamble, K. L., McNeill, J. K. IV, & Hummer, D. L. (2017). The dynamics of GABA signaling: Revelations from the circadian pacemaker in the suprachiasmatic nucleus. Frontiers in Neuroendocrinology, 44, 35-82. https://doi.org/10.1016/j.yfrne.2016.11.003
Arendt, A., Baz, E. S., & Stengl, M. (2017). Functions of corazonin and histamine in light entrainment of the circadian pacemaker in the Madeira cockroach, Rhyparobia maderae. Journal of Comparative Neurology, 525, 1250-1272. https://doi.org/10.1002/cne.24133
Belenky, M. A., Sollars, P. J., Mount, D. B., Alper, S. L., Yarom, Y., & Pickard, G. E. (2010). Cell-type specific distribution of chloride transporters in the rat suprachiasmatic nucleus. Neuroscience, 165, 1519-1537. https://doi.org/10.1016/j.neuroscience.2009.11.040
Blankenburg, S., Balfanz, S., Hayashi, Y., Shigenobu, S., Miura, T., Baumann, O., … Blenau, W. (2015). Cockroach GABAB receptor subtypes: Molecular characterization, pharmacological properties and tissue distribution. Neuropharmacology, 88, 134-144. https://doi.org/10.1016/j.neuropharm.2014.08.022
Buckingham, S. D., Biggin, P. C., Sattelle, B. M., Brown, L. A., & Sattelle, D. B. (2005). Insect GABA receptors: Splicing, editing and targeting by antiparasitics and insecticides. Molecular Pharmacology., 68(4), 942-951. https://doi.org/10.1124/mol.105.015313
Buhl, E., Bradlaugh, A., Ogueta, M., Chen, K.-F., Stanewsky, R., & Hodge, J. J. (2016). Quasimodo mediates daily and acute light effects on Drosophila clock neuron excitability. Proceedings of the National Academy of Sciences, USA, 113, 13486-13491. https://doi.org/10.1073/pnas.1606547113
Fleissner, G., Loesel, R., Fleissner, G., Waterkamp, M., Kleiner, O., Batschauer, A., & Homberg, U. (2001). Candidates for extraocular photoreceptors in the cockroach suggest homology to the lamina and lobula organs in beetles. Journal of Comparative Neurology, 433, 401-414. https://doi.org/10.1002/(ISSN)1096-9861
Frangaj, A., & Fan, Q. R. (2017). Structural biology of GABAB receptor. Neuropharmacology, 136, 68-79.
French-Constant, R. (1994). The molecular and population genetics of cyclodiene insecticide resistance. Insect Biochemistry and Molecular Biology, 24, 335-345. https://doi.org/10.1016/0965-1748(94)90026-4
Froestl, W. (2010). Chemistry and pharmacology of GABAB receptor ligands. Advances in Pharmacology, 58, 19-62. https://doi.org/10.1016/S1054-3589(10)58002-5
Gassmann, M., & Bettler, B. (2012). Regulation of neuronal GABAB receptor functions by subunit composition. Nature Reviews Neuroscience, 13, 380-394. https://doi.org/10.1038/nrn3249
Gestrich, J., Giese, M., Shen, W., Zhang, Y., Voss, A., Popov, C., … Wei, H. (2018). Sensitivity to pigment-dispersing factor (PDF) is cell-type specific among PDF-expressing circadian clock neurons in the Madeira cockroach. Journal of Biological Rhythms, 33, 35-51. https://doi.org/10.1177/0748730417739471
Giese, M., Gestrich, J., Massah, A., Peterle, J., Wei, H., & Stengl, M. (2018). GABA- and serotonin-expressing neurons take part in inhibitory as well as excitatory input pathways to the circadian clock of the Madeira cockroach Rhyparobia maderae. European Journal of Neuroscience, 47, 1067-1080. https://doi.org/10.1111/ejn.13863
Harrison, J., Chen, H., Sattelle, E., Barker, P., Huskisson, N., Rauh, J., … Sattelle, D. (1996). Immunocytochemical mapping of a C-terminus anti-peptide antibody to the GABA receptor subunit, RDL in the nervous system of Drosophila melanogaster. Cell and Tissue Research, 284, 269-278. https://doi.org/10.1007/s004410050587
Helfrich-Förster, C. (2018). Sleep in insects. Annual Review of Entomology, 63, 69-86. https://doi.org/10.1146/annurev-ento-020117-043201
Homberg, U., Kingan, T. G., & Hildebrand, J. G. (1987). Immunocytochemistry of GABA in the brain and suboesophageal ganglion of Manduca sexta. Cell and Tissue Research, 248, 1-24. https://doi.org/10.1007/BF01239957
Lee, V., & Maguire, J. (2014). The impact of tonic GABAA receptor-mediated inhibition on neuronal excitability varies across brain region and cell type. Frontiers in Neural Circuits, 8, 3.
Li, Q., Li, Y., Wang, X., Qi, J., Jin, X., Tong, H., … Han, J. (2017). Fbxl4 serves as a clock output molecule that regulates sleep through promotion of rhythmic degradation of the GABAA receptor. Current Biology, 27, 3616-3625. https://doi.org/10.1016/j.cub.2017.10.052
Lüscher, C., Jan, L. Y., Stoffel, M., Malenka, R. C., & Nicoll, R. A. (1997). G protein-coupled inwardly rectifying K+ channels (GIRKs) mediate postsynaptic but not presynaptic transmitter actions in hippocampal neurons. Neuron, 19, 687-695. https://doi.org/10.1016/S0896-6273(00)80381-5
McNeill, J. K. IV, Walton, J. C., & Albers, H. E. (2018). Functional significance of the excitatory effects of GABA in the suprachiasmatic nucleus. Journal of Biological Rhythms, 33, 376-387. https://doi.org/10.1177/0748730418782820
Mezler, M., Müller, T., & Raming, K. (2001). Cloning and functional expression of GABAB receptors from Drosophila. European Journal of Neuroscience, 13, 477-486. https://doi.org/10.1046/j.1460-9568.2001.01410.x
Ono, D., Honma, K.-i., Yanagawa, Y., Yamanaka, A., & Honma, S. (2018). Role of GABA in the regulation of the central circadian clock of the suprachiasmatic nucleus. Journal of Physiological Sciences, 68, 333-343. https://doi.org/10.1007/s12576-018-0604-x
Page, T. L. (1982). Transplantation of the cockroach circadian pacemaker. Science, 216, 73-75. https://doi.org/10.1126/science.216.4541.73
Petri, B., Homberg, U., Loesel, R., & Stengl, M. (2002). Evidence for a role of GABA and Mas-allatotropin in photic entrainment of the circadian clock of the cockroach Leucophaea maderae. Journal of Experimental Biology, 205, 1459-1469.
Petri, B., & Stengl, M. (1997). Pigment-dispersing hormone shifts the phase of the circadian pacemaker of the cockroach Leucophaea maderae. Journal of Neuroscience, 17, 4087-4093. https://doi.org/10.1523/JNEUROSCI.17-11-04087.1997
Petri, B., Stengl, M., Würden, S., & Homberg, U. (1995). Immunocytochemical characterization of the accessory medulla in the cockroach Leucophaea maderae. Cell and Tissue Research, 282, 3-19. https://doi.org/10.1007/BF00319128
Reischig, T., Petri, B., & Stengl, M. (2004). Pigment-dispersing hormone (PDH)-immunoreactive neurons form a direct coupling pathway between the bilaterally symmetric circadian pacemakers of the cockroach Leucophaea maderae. Cell and Tissue Research, 318, 553-564. https://doi.org/10.1007/s00441-004-0927-1
Reischig, T., & Stengl, M. (1996). Morphology and pigment-dispersing hormone immunocytochemistry of the accessory medulla, the presumptive circadian pacemaker of the cockroach Leucophaea maderae: A light-and electron-microscopic study. Cell and Tissue Research, 285, 305-319. https://doi.org/10.1007/s004410050648
Reischig, T., & Stengl, M. (2002). Optic lobe commissures in a three-dimensional brain model of the cockroach Leucophaea maderae: A search for the circadian coupling pathways. Journal of Comparative Neurology, 443, 388-400. https://doi.org/10.1002/(ISSN)1096-9861
Reischig, T., & Stengl, M. (2003a). Ectopic transplantation of the accessory medulla restores circadian locomotor rhythms in arrhythmic cockroaches (Leucophaea maderae). Journal of Experimental Biology, 206, 1877-1886. https://doi.org/10.1242/jeb.00373
Reischig, T., & Stengl, M. (2003b). Ultrastructure of pigment-dispersing hormone-immunoreactive neurons in a three-dimensional model of the accessory medulla of the cockroach Leucophaea maderae. Cell and Tissue Research, 314, 421-435. https://doi.org/10.1007/s00441-003-0772-7
Rivera, C., Li, H., Thomas-Crusells, J., Lahtinen, H., Viitanen, T., Nanobashvili, A., … Kaila, K. (2002). BDNF-induced TrkB activation down-regulates the K+-Cl− cotransporter KCC2 and impairs neuronal Cl− extrusion. Journal of Cell Biology, 159, 747-752. https://doi.org/10.1083/jcb.200209011
Sattelle, D. B., Lummis, S. C., Wong, J. F., & Rauh, J. J. (1991). Pharmacology of insect GABA receptors. Neurochemical Research, 16, 363-374. https://doi.org/10.1007/BF00966100
Schendzielorz, J., & Stengl, M. (2014). Candidates for the light entrainment pathway to the circadian clock of the Madeira cockroach Rhyparobia maderae. Cell and Tissue Research, 355, 447-462. https://doi.org/10.1007/s00441-013-1757-9
Schneider, N.-L., & Stengl, M. (2005). Pigment-dispersing factor and GABA synchronize cells of the isolated circadian clock of the cockroach Leucophaea maderae. Journal of Neuroscience, 25, 5138-5147. https://doi.org/10.1523/JNEUROSCI.5138-A-04.2005
Schneider, N.-L., & Stengl, M. (2006). Gap junctions between accessory medulla neurons appear to synchronize circadian clock cells of the cockroach Leucophaea maderae. Journal of Neurophysiology, 95, 1996-2002. https://doi.org/10.1152/jn.00835.2005
Schneider, N.-L., & Stengl, M. (2007). Extracellular long-term recordings of the isolated accessory medulla, the circadian pacemaker center of the cockroach Leucophaea maderae, reveal ultradian and hint circadian rhythms. Journal of Comparative Physiology A, 193, 35-42. https://doi.org/10.1007/s00359-006-0169-7
Schulze, J., Schendzielorz, T., Neupert, S., Predel, R., & Stengl, M. (2013). N europeptidergic input pathways to the circadian pacemaker center of the Madeira cockroach analysed with an improved injection technique. European Journal of Neuroscience, 38, 2842-2852.
Simmonds, M. A. (1983). Multiple GABA receptors and associated regulatory sites. Trends in Neurosciences, 6, 279-281. https://doi.org/10.1016/0166-2236(83)90119-4
Soehler, S., Stengl, M., & Reischig, T. (2011). Circadian pacemaker coupling by multi-peptidergic neurons in the cockroach Leucophaea maderae. Cell and Tissue Research, 343, 559-577. https://doi.org/10.1007/s00441-010-1091-4
Stengl, M., & Arendt, A. (2016). Peptidergic circadian clock circuits in the Madeira cockroach. Current Opinion in Neurobiology, 41, 44-52. https://doi.org/10.1016/j.conb.2016.07.010
Stengl, M., & Homberg, U. (1994). Pigment-dispersing hormone-immunoreactive neurons in the cockroach Leucophaea maderae share properties with circadian pacemaker neurons. Journal of Comparative Physiology A, 175, 203-213. https://doi.org/10.1007/BF00215116
Stengl, M., Werckenthin, A., & Wei, H. (2015). How does the circadian clock tick in the Madeira cockroach? Current Opinion in Insect Science, 12, 38-45. https://doi.org/10.1016/j.cois.2015.09.007
Vigot, R., Barbieri, S., Bräuner-Osborne, H., Turecek, R., Shigemoto, R., Zhang, Y.-P., … Fritschy, J.-M. (2006). Differential compartmentalization and distinct functions of GABAB receptor variants. Neuron, 50, 589-601. https://doi.org/10.1016/j.neuron.2006.04.014
Walton, J.C., McNeill, J.K., Oliver, K.A., & Albers, H.E. (2017). Temporal regulation of GABAA receptor subunit expression: Role in synaptic and extrasynaptic communication in the suprachiasmatic nucleus. eNeuro, 4, ENEURO.0352-0316.2017.
Wei, H., el Jundi, B., Homberg, U., & Stengl, M. (2010). Implementation of pigment-dispersing factor-immunoreactive neurons in a standardized atlas of the brain of the cockroach Leucophaea maderae. Journal of Comparative Neurology, 518, 4113-4133. https://doi.org/10.1002/cne.22471
Wei, H., & Stengl, M. (2012). Ca2+-dependent ion channels underlying spontaneous activity in insect circadian pacemaker neurons. European Journal of Neuroscience, 36, 3021-3029. https://doi.org/10.1111/j.1460-9568.2012.08227.x