Differential Role of Hypothalamic AMPKα Isoforms in Fish: an Evolutive Perspective.


Journal

Molecular neurobiology
ISSN: 1559-1182
Titre abrégé: Mol Neurobiol
Pays: United States
ID NLM: 8900963

Informations de publication

Date de publication:
Jul 2019
Historique:
received: 08 08 2018
accepted: 15 11 2018
pubmed: 22 11 2018
medline: 15 1 2020
entrez: 22 11 2018
Statut: ppublish

Résumé

In mammals, hypothalamic AMP-activated protein kinase (AMPK) α1 and α2 isoforms mainly relate to regulation of thermogenesis/liver metabolism and food intake, respectively. Since both isoforms are present in fish, which do not thermoregulate, we assessed their role(s) in hypothalamus regarding control of food intake and energy homeostasis. Since many fish species are carnivorous and mostly mammals are omnivorous, assessing if the role of hypothalamic AMPK is different is also an open question. Using the rainbow trout as a fish model, we first observed that food deprivation for 5 days did not significantly increase phosphorylation status of AMPKα in hypothalamus. Then, we administered adenoviral vectors that express dominant negative (DN) AMPKα1 or AMPKα2 isoforms. The inhibition of AMPKα2 (but not AMPKα1) led to decreased food intake. The central inhibition of AMPKα2 resulted in liver with decreased capacity of use and synthesis of glucose, lipids, and amino acids suggesting that a signal of nutrient abundance flows from hypothalamus to the liver, thus suggesting a role for central AMPKα2 in the regulation of peripheral metabolism in fishes. The central inhibition of AMPKα1 induced comparable changes in liver metabolism though at a lower extent. From an evolutionary point of view, it is of interest that the function of central AMPKα2 remained similar throughout the vertebrate lineage. In contrast, the function of central AMPKα1 in fish relates to modulation of liver metabolism whereas in mammals modulates not only liver metabolism but also brown adipose tissue and thermogenesis.

Identifiants

pubmed: 30460617
doi: 10.1007/s12035-018-1434-9
pii: 10.1007/s12035-018-1434-9
doi:

Substances chimiques

Isoenzymes 0
AMP-Activated Protein Kinases EC 2.7.11.31

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

5051-5066

Subventions

Organisme : Ministerio de Economía, Industria y Competitividad, Gobierno de España
ID : AGL2016-74857-C3-1-R
Organisme : Ministerio de Economía, Industria y Competitividad, Gobierno de España
ID : SAF2015-71026-R
Organisme : Ministerio de Economía, Industria y Competitividad, Gobierno de España
ID : IJCI-2016-30499
Organisme : Ministerio de Educación, Cultura y Deporte
ID : FPU16/00045

Références

López M (2017) Hypothalamic AMPK: a golden target against obesity? Eur J Endocrinol 176(5):R235–R246. https://doi.org/10.1530/EJE-16-0927
doi: 10.1530/EJE-16-0927 pubmed: 28232370 pmcid: 5425938
López M, Nogueiras R, Tena-Sempere M, Diéguez C (2016) Hypothalamic AMPK: a canonical regulator of whole-body energy balance. Nature Rev Endocrinol 12(7):421–432. https://doi.org/10.1038/nrendo.2016.67
doi: 10.1038/nrendo.2016.67
Martínez de Morentin PB, González CR, Saha AK, Martins L, Diéguez C, Vidal-Puig A, Tena-Sempere M, López M (2011) Hypothalamic AMP-activated protein kinase as a mediator of whole body energy balance. Rev Endocr Metab Disord 2(3):127–140. https://doi.org/10.1007/s11154-011-9165-5
doi: 10.1007/s11154-011-9165-5
Andersson U, Filipsson K, Abbott CR, Woods A, Smith K, Bloom SR, Carling D, Small CJ (2004) AMP-activated protein kinase plays a role in the control of food intake. J Biol Chem 279(13):12005–12008. https://doi.org/10.1074/jbc.C300557200
doi: 10.1074/jbc.C300557200 pubmed: 14742438
Minokoshi Y, Alquier T, Furukawa H, Kim YB, Lee A, Xue B, Mu J, Foufelle F et al (2004) AMP-kinase regulates food intake by responding to hormonal and nutrient signals in the hypothalamus. Nature 428(6982):569–574. https://doi.org/10.1038/nature02440
doi: 10.1038/nature02440 pubmed: 15058305
López M, Lage R, Saha AK, Pérez-Tilve D, Vázquez MJ, Varela L, Sangiao-Alvarellos S, Tovar S et al (2008) Hypothalamic fatty acid metabolism mediates the orexigenic action of ghrelin. Cell Metab 7(5):389–399. https://doi.org/10.1016/j.cmet.2008.03.006
doi: 10.1016/j.cmet.2008.03.006 pubmed: 18460330
Contreras C, Nogueiras R, Diéguez C, Medina-Gómez G, López M (2016) Hypothalamus and thermogenesis: heating the BAT, browning the WAT. Mol Cell Endocrinol 438:107–115. https://doi.org/10.1016/j.mce.2016.08.002
doi: 10.1016/j.mce.2016.08.002 pubmed: 27498420
López M, Varela L, Vázquez MJ, Rodríguez-Cuenca S, González CR, Velagapudi VR, Morgan DA, Schoenmakers E et al (2010) Hypothalamic AMPK and fatty acid metabolism mediate thyroid regulation of energy balance. Nature Med 16(9):1001–1008. https://doi.org/10.1038/nm.2207
doi: 10.1038/nm.2207 pubmed: 20802499
Martins L, Seoane-Collazo P, Contreras C, González-García I, Martínez-Sánchez N, González F, Zalvide J, Gallego R et al (2016) A Functional link between AMPK and orexin mediates the effect of BMP8B on energy balance. Cell Rep 16(8):2231–2242. https://doi.org/10.1016/j.celrep.2016.07.045
doi: 10.1016/j.celrep.2016.07.045 pubmed: 27524625 pmcid: 4999418
Jorgensen SB, Rose AJ (2008) How is AMPK activity regulated in skeletal muscles during exercise? Front Biosci 13:5589–5604. https://doi.org/10.2741/3102
doi: 10.2741/3102 pubmed: 18508608
Viollet B, Andreelli F, Jorgensen SB, Perrin C, Flamez D, Mu J, Wojtaszewski JF, Schuit FC et al (2003) Physiological role of AMP-activated protein kinase (AMPK): insights from knockout mouse models. Biochem Soc Trans 31(1):216–219. https://doi.org/10.1042/BST0310216
doi: 10.1042/BST0310216 pubmed: 12546688
O’Neill HM, Maarbjerg SJ, Crane JD, Jeppesen J, Jorgensen SB, Schertzer JD, Shyroka O, Kiens B et al (2011) AMP-activated protein kinase (AMPK) β1β2 muscle null mice reveal an essential role for AMPK in maintaining mitochondrial content and glucose uptake during exercise. Proc Natl Acad Sci U S A 108(38):16092–16097. https://doi.org/10.1073/pnas.1105062108
doi: 10.1073/pnas.1105062108 pubmed: 21896769 pmcid: 3179037
Martínez-Sánchez N, Seoane-Collazo P, Contreras C, Varela L, Villaroya J, Rial-Pensado E, Buqué X, Aurrekoetxea I et al (2017) Hypothalamic AMPK-ER stress-JNK1 axis mediates the central actions of thyroid hormones on energy balance. Cell Metab 26(1):212–229. https://doi.org/10.1016/j.cmet.2017.06.014
doi: 10.1016/j.cmet.2017.06.014 pubmed: 28683288 pmcid: 5501726
Rutter GA, da Silva Xavier GA, Leclerc I (2003) Roles of 5’AMP activated protein kinase (AMPK) in mammalian glucose homeostasis. Biochem J 375(1):1–16. https://doi.org/10.1042/BJ20030048
doi: 10.1042/BJ20030048 pubmed: 12839490 pmcid: 1223661
McCrimmon RJ, Fan X, Cheng H, McNay E, Chan O, Shaw M, Ding Y, Zhu W et al (2006) Activation of AMP-activated protein kinase within the ventromedial hypothalamus amplifies counterregulatory hormone responses in rats with defective counterregulation. Diabetes 55(6):1755–1760. https://doi.org/10.2337/db05-1359
doi: 10.2337/db05-1359 pubmed: 16731839
Yang CS, Lam CKL, Chari M, Cheung GWC, Kokorovic A, Gao S, Leclerc I, Rutter G et al (2010) Hypothalamic AMP-activated protein kinase regulates glucose production. Diabetes 59(10):2435–2443. https://doi.org/10.2337/db10-0221
doi: 10.2337/db10-0221 pubmed: 20682691 pmcid: 3279556
Kinote A, Faria JA, Roman EA, Solon C, Razolli DS, Ignacio-Souza LM, Sollon CS, Nascimento LF et al (2012) Fructose-induced hypothalamic AMPK activation stimulates hepatic PEPCK and gluconeogenesis due to increased corticosterone levels. Endocrinology 153(8):3633–3645. https://doi.org/10.1210/en.2012-1341
doi: 10.1210/en.2012-1341 pubmed: 22585831
Santos GA, Pereira VD, Roman EAFR, Ignacio-Souza L, Vitorino DC, Ferreira de Moura R, Razolli DS, Torsoni AS et al (2013) Hypothalamic inhibition of acetyl-CoA carboxylase stimulates hepatic counter-regulatory response independent of AMPK activation in rats. PLoS One 8:e62669. https://doi.org/10.1371/journal.pone.0062669
doi: 10.1371/journal.pone.0062669 pubmed: 23626844 pmcid: 3633841
Craig PM, Moon TW (2011) Fasted zebrafish mimic genetic and physiological responses in mammals: a model for obesity and diabetes? Zebrafish 8(3):109–117. https://doi.org/10.1089/zeb.2011.0702
doi: 10.1089/zeb.2011.0702 pubmed: 21854210
Fuentes EN, Safian D, Einarsdottir IE, Valdés JA, Elorza AA, Molina A, Björnsson BT (2013) Nutritional status modulates plasma leptin, AMPK and TOR activation, and mitochondrial biogenesis: implications for cell metabolism and growth in skeletal muscle of the fine flounder. Gen Comp Endocrinol 186:172–180. https://doi.org/10.1016/j.ygcen.2013.02.009
doi: 10.1016/j.ygcen.2013.02.009 pubmed: 23500005
Polakof S, Panserat S, Craig PM, Martyres DJ, Plagnes-Juan E, Savari S, Aris-Brosou S, Moon TW (2011) The metabolic consequences of hepatic AMP-kinase phosphorylation in rainbow trout. PLoS One 6:e20228. https://doi.org/10.1371/journal.pone.0020228
doi: 10.1371/journal.pone.0020228 pubmed: 21625448 pmcid: 3098864
Kamalam BS, Medale F, Kaushik S, Polakof S, Skiba-Cassy S, Panserat S (2012) Regulation of metabolism by dietary carbohydrates in two lines of rainbow trout divergently selected for muscle fat content. J Exp Biol 215(15):2567–2578. https://doi.org/10.1242/jeb.070581
doi: 10.1242/jeb.070581 pubmed: 22786633
Jin J, Médale F, Kamalam BS, Aguirre P, Véron V, Panserat S (2014) Comparison of glucose and lipid metabolic gene expressions between fat and lean lines of rainbow trout after a glucose load. PLoS One 9:e105548. https://doi.org/10.1371/journal.pone.0105548
doi: 10.1371/journal.pone.0105548 pubmed: 25141351 pmcid: 4139350
Craig PM, Moon TW (2013) Methionine restriction affects the phenotypic and transcriptional response of rainbow trout (Oncorhynchus mykiss) to carbohydrate-enriched diets. Br J Nutr 109(3):402–412. https://doi.org/10.1017/S0007114512001663
doi: 10.1017/S0007114512001663 pubmed: 22583536
Wei C-C, Wu K, Gao Y, Zhang L-H, Li D-D, Luo Z (2017) Magnesium reduces hepatic lipid accumulation in yellow catfish (Pelteobagrus fulvidraco) and modulates lipogenesis and lipolysis via PPARα, JAK-STAT, and AMPK pathways in hepatocytes. J Nutr 147(6):1070–1078. https://doi.org/10.3945/jn.116.245852
doi: 10.3945/jn.116.245852 pubmed: 28424262
Xu C, Liu WB, Zhang D-D, Cao X-F, Shi H-J, Li X-F (2018) Interactions between dietary carbohydrate and metformin: implications on energy sensing, insulin signaling pathway, glycolipid metabolism and glucose tolerance in blunt snout bream Megalobrama amblycephala. Aquaculture 483:183–195. https://doi.org/10.1016/j.aquaculture.2017.10.022
doi: 10.1016/j.aquaculture.2017.10.022
Velasco C, Comesaña S, Conde-Sieira M, Míguez JM, Soengas JL (2018) The short-term presence of oleate or octanoate alters the phosphorylation status of Akt, AMPK, mTOR, CREB, and FoxO1 in liver of rainbow trout (Oncorhynchus mykiss). Comp Biochem Physiol B Biochem Mol Biol 219–220:17–25. https://doi.org/10.1016/j.cbpb.2018.03.002
doi: 10.1016/j.cbpb.2018.03.002 pubmed: 29567069
Magnoni LJ, Palstra AP, Planas JV (2014) Fueling the engine: induction of AMP-activated protein kinase in trout skeletal muscle by swimming. J Exp Biol 217(10):1649–1652. https://doi.org/10.1242/jeb.099192
doi: 10.1242/jeb.099192 pubmed: 24526729
Morash AJ, Vanderveken M, McClelland GB (2014) Muscle metabolic remodeling in response to endurance exercise in salmonids. Frontiers Physiol 5:452. https://doi.org/10.3389/fphys.2014.00452
doi: 10.3389/fphys.2014.00452
Rovira M, Arrey G, Planas JV (2017) Exercise-induced hypertrophic and oxidative signaling pathways and myokine expression in fast muscle of adult zebrafish. Frontiers Physiol 8:1063. https://doi.org/10.3389/fphys.2017.01063
doi: 10.3389/fphys.2017.01063
Jibb L, Richards JG (2008) AMP-activated protein kinase activity during metabolic rate depression in the hypoxic goldfish, Carassius auratus. J Exp Biol 211(19):3111–3122. https://doi.org/10.1242/jeb.019117
doi: 10.1242/jeb.019117 pubmed: 18805810
Stensløkken K-O, Ellefsen S, Stecyk JAW, Dahl MB, Nilsson GE, Vaage J (2008) Differential regulation of AMP-activated kinase and AKT kinase in response to oxygen availability in crucian carp (Carassius carassius). Am J Physiol Regul Integr Comp Physiol 295(6):R1803–R1814. https://doi.org/10.1152/ajpregu.90590.2008
doi: 10.1152/ajpregu.90590.2008 pubmed: 18922957
Callaghan NI, Tunnah L, Currie S, MacCormack TJ (2016) Metabolic adjustments to short-term diurnal temperature fluctuation in the rainbow trout (Oncorhynchus mykiss). Physiol Biochem Zool 89(6):498–510. https://doi.org/10.1086/688680
doi: 10.1086/688680 pubmed: 27792532
Zeng L, Liu B, Wu CW, Lei JL, Xu MY, Zhu AY, Zhang JS, Hong WS (2016) Molecular characterization and expression analysis of AMPK α subunit isoform genes from Scophthalmus maximus responding to salinity stress. Fish Physiol Biochem 42(6):1595–1607. https://doi.org/10.1007/s10695-016-0243-1
doi: 10.1007/s10695-016-0243-1 pubmed: 27380381
Gilmour KM, Craig PM, Dhillon RS, Lau GY, Richards JG (2017) Regulation of energy metabolism during social interactions in rainbow trout: a role for AMP-activated protein kinase. Am J Physiol Regul Integr Comp Physiol 313(5):R549–R559. https://doi.org/10.1152/ajpregu.00341.2016
doi: 10.1152/ajpregu.00341.2016 pubmed: 28768660 pmcid: 5792151
Xu Z, Li E, Xu C, Gan L, Qin JG, Chen L (2016) Response of AMP-activated protein kinase and energy metabolism to acute nitrite exposure in the Nile tilapia Oreochromis niloticus. Aquat Toxicol 177:86–97. https://doi.org/10.1016/j.aquatox.2016.05.020
doi: 10.1016/j.aquatox.2016.05.020 pubmed: 27262938
Librán-Pérez M, Geurden I, Dias K, Corraze G, Panserat S, Soengas JL (2015) Feeding rainbow trout with a lipid-enriched diet: effects on fatty acid sensing, regulation of food intake and cellular signaling pathways. J Exp Biol 218(16):2610–2619. https://doi.org/10.1242/jeb.123802
doi: 10.1242/jeb.123802 pubmed: 26089527
Velasco C, Otero-Rodiño C, Comesana S, Miguez JM, Soengas JL (2017) Hypothalamic mechanisms linking fatty acid sensing and food intake regulation in rainbow trout. J Mol Endocrinol 59(4):377–390. https://doi.org/10.1530/JME-17-0148
doi: 10.1530/JME-17-0148 pubmed: 28951437
Otero-Rodiño C, Velasco C, Álvarez-Otero R, López-Patino MA, Miguez JM, Soengas JL (2017) Changes in the levels and phosphorylation status of Akt, AMPK, CREB and FoxO1 in hypothalamus of rainbow trout under conditions of enhanced glucosensing activity. J Exp Biol 220(23):4410–4417. https://doi.org/10.1242/jeb.165159
doi: 10.1242/jeb.165159 pubmed: 28970346
Lin S-C, Hardie DG (2018) AMPK: sensing glucose as well as cellular energy status. Cell Metab 27(2):299–313. https://doi.org/10.1016/j.cmet.2017.10.009
doi: 10.1016/j.cmet.2017.10.009 pubmed: 29153408
Craig PM, Moyes CD, LeMoine CMR (2018) Sensing and responding to energetic stress: evolution of the AMPK network. Comp Biochem Physiol B Biochem Mol Biol 224:156–169. https://doi.org/10.1016/j.cbpb.2017.11.001
doi: 10.1016/j.cbpb.2017.11.001 pubmed: 29127074
Claret M, Smith MA, Batterham RL, Selman C, Choudhury AI, Fryer LG, Clements M, Al-Qassab H et al (2007) AMPK is essential for energy homeostasis regulation and glucose sensing by POMC and AgRP neurons. J Clin Invest 117(8):2325–2336. https://doi.org/10.1172/JCI31516
doi: 10.1172/JCI31516 pubmed: 17671657 pmcid: 1934578
Tanida M, Yamamoto N, Shibamoto T, Rahmouni K (2013) Involvement of hypothalamic AMP-activated protein kinase in leptin-induced sympathetic nerve activation. PLoS One 8:e56660. https://doi.org/10.1371/journal.pone.0056660
doi: 10.1371/journal.pone.0056660 pubmed: 23418591 pmcid: 3572050
Xu C, Liu WB, Zhang DD, Wang KZ, Xia SL, Li XF (2017) Molecular characterization of AMP-activated protein kinase α2 from herbivorous fish Megalobrama amblycephala and responsiveness to glucose loading and dietary carbohydrate levels. Comp Biochem Physiol A Mol Integr Physiol 208:24–34. https://doi.org/10.1016/j.cbpa.2017.03.008
doi: 10.1016/j.cbpa.2017.03.008 pubmed: 28315774
Polakof S, Mommsen TP, Soengas JL (2011) Glucosensing and glucose homeostasis: from fish to mammals. Comp Biochem Physiol B Biochem Mol Biol 160:123–149. https://doi.org/10.1016/j.cbpb.2011.07.006
doi: 10.1016/j.cbpb.2011.07.006 pubmed: 21871969
Polakof S, Panserat S, Soengas JL, Moon TW (2012) Glucose metabolism in fish: A review. J Comp Physiol B 182(8):1015–1045. https://doi.org/10.1007/s00360-012-0658-7
doi: 10.1007/s00360-012-0658-7 pubmed: 22476584
Conde-Sieira M, Soengas JL (2017) Nutrient sensing systems in fish: impact on food intake regulation and energy homeostasis. Front Neurosci 10:603. https://doi.org/10.3389/fnins.2016.00603
doi: 10.3389/fnins.2016.00603 pubmed: 28111540 pmcid: 5216673
van de Pol I, Flik G, Gorissen M (2017) Comparative physiology of energy metabolism: fishing for endocrine signals in the early vertebrate pool. Frontiers Endocrinol 8:36. https://doi.org/10.3389/fendo.2017.00036
doi: 10.3389/fendo.2017.00036
Polakof S, Soengas JL (2008) Involvement of lactate in glucose metabolism and glucosensing function in selected tissues of rainbow trout. J Exp Biol 211(7):1075–1086. https://doi.org/10.1242/jeb.014050
doi: 10.1242/jeb.014050 pubmed: 18344481
Woods A, Azzout-Marniche D, Foretz M, Stein SC, Lemarchand P, Ferré P, Foufelle F, Carling D (2000) Characterization of the role of AMP-activated protein kinase in the regulation of glucose-activated gene expression using constitutively active and dominant negative forms of the kinase. Mol Cell Biol 20(18):6704–6711. https://doi.org/10.1128/MCB.20.18.6704-6711.2000
doi: 10.1128/MCB.20.18.6704-6711.2000 pubmed: 10958668 pmcid: 86183
Martínez de Morentin PB, Whittle AJ, Fernø J, Nogueiras R, Diéguez C, Vidal-Puig A, López M (2012) Nicotine induces negative energy balance through hypothalamic AMP-activated protein kinase. Diabetes 61(4):807–817. https://doi.org/10.2337/db11-1079
doi: 10.2337/db11-1079 pubmed: 22315316 pmcid: 3314364
Whittle AJ, Carobbio S, Martins L, Slawik M, Hondares E, Vázquez MJ, Morgan D, Csikasz RI et al (2012) BMP8B increases brown adipose tissue thermogenesis through both central and peripheral actions. Cell 149(4):871–885. https://doi.org/10.1016/j.cell.2012.02.066
doi: 10.1016/j.cell.2012.02.066 pubmed: 22579288 pmcid: 3383997
Martínez de Morentin PB, González-García I, Martins L, Lage R, Fernández-Mallo D, Martínez-Sánchez N, Ruíz-Pino F, Liu J et al (2014) Estradiol regulates brown adipose tissue thermogenesis via hypothalamic AMPK. Cell Metab 20(1):41–53. https://doi.org/10.1016/j.cmet.2014.03.031
doi: 10.1016/j.cmet.2014.03.031 pubmed: 24856932 pmcid: 4082097
Beiroa D, Imbernon M, Gallego R, Senra A, Herranz D, Villarroya F, Serrano M, Fernø J et al (2014) GLP-1 agonism stimulates brown adipose tissue thermogenesis and browning through hypothalamic AMPK. Diabetes 63(10):3346–3358. https://doi.org/10.2337/db14-0302
doi: 10.2337/db14-0302 pubmed: 24917578
Martínez-Sánchez N, Moreno-Navarrete JM, Contreras C, Rial-Pensado E, Fernø J, Nogueiras R, Diéguez C, Fernández-Real JM et al (2017) Thyroid hormones induce browning of white fat. J Endocrinol 232(2):351–362. https://doi.org/10.1530/JOE-16-0425
doi: 10.1530/JOE-16-0425 pubmed: 27913573
Seoane-Collazo P, Roa J, Rial-Pensado E, Liñares-Pose L, Beiroa D, Ruíz-Pino F, López-González T, Morgan DA et al (2018) SF1-specific AMPKα1 deletion protects against diet-induced obesity. Diabetes 67(11):2213–2226. https://doi.org/10.2337/db17-1538
doi: 10.2337/db17-1538 pubmed: 30104247 pmcid: 6198345
Polakof S, Míguez JM, Soengas JL (2008) Dietary carbohydrates induce changes in glucosensing capacity and food intake in rainbow trout. Am J Physiol Regul Integr Comp Physiol 295(2):R478–R489. https://doi.org/10.1152/ajpregu.00176.2008
doi: 10.1152/ajpregu.00176.2008 pubmed: 18525014
Moore S (1968) Amino acid analysis: aqueous dimethyl sulfoxide as solvent for the ninhydrin reaction. J Biol Chem 243(23):6281–6283
pubmed: 5723468
Keppler D, Decker K (1974) Glycogen determination with amyloglucosidase. In: Bergmeyer HU (ed) Methods of enzymatic analysis. Academic Press, New York, pp. 1127–1131
Polakof S, Míguez JM, Moon TW, Soengas JL (2007) Evidence for the presence of a glucosensor in hypothalamus, hindbrain, and Brockmann bodies of rainbow trout. Am J Physiol Regul Integr Comp Physiol 292(4):R1657–R1666. https://doi.org/10.1152/ajpregu.00525.2006
doi: 10.1152/ajpregu.00525.2006 pubmed: 17170235
Polakof S, Álvarez R, Soengas JL (2010) Gut glucose metabolism in rainbow trout: implications in glucose homeostasis and glucosensing capacity. Am J Physiol Regul Integr Comp Physiol 299(1):R19–R32. https://doi.org/10.1152/ajpregu.00005.2010
doi: 10.1152/ajpregu.00005.2010 pubmed: 20357022
Librán-Pérez M, Polakof S, López-Patiño MA, Míguez JM, Soengas JL (2012) Evidence of a metabolic fatty acid-sensing system in the hypothalamus and Brockmann bodies of rainbow trout: implications in food intake regulation. Am J Physiol Reg Integr Comp Physiol 302(11):R1340–R1350. https://doi.org/10.1152/ajpregu.00070.2012
doi: 10.1152/ajpregu.00070.2012
Velasco C, Libran-Perez M, Otero-Rodiño C, Lopez-Patino MA, Miguez JM, Soengas JL (2016) Ceramides are involved in the regulation of food intake in rainbow trout (Oncorhynchus mykiss). Am J Physiol Regul Integr Comp Physiol 311(4):R658–R668. https://doi.org/10.1152/ajpregu.00201.2016
doi: 10.1152/ajpregu.00201.2016 pubmed: 27465737
Panserat S, Blin C, Médale F, Plagnes-Juan E, Brèque J, Krishnamoorthy J, Kaushik S (2000) Molecular cloning, tissue distribution and sequence analysis of complete glucokinase cDNAs from gilthead seabream (Sparus aurata), rainbow trout (Oncorhynchus mykiss) and common carp (Cyprinus carpio). Biochim Biophys Acta 1474(1):61–69. https://doi.org/10.1016/S0304-4165(99)00213-5
doi: 10.1016/S0304-4165(99)00213-5 pubmed: 10699491
Geurden I, Aramendi M, Zambonino-Infante J, Panserat S (2007) Early feeding of carnivorous rainbow trout (Oncorhynchus mykiss) with a hyperglucidic diet during a short period: effect on dietary glucose utilization in juveniles. Am J Physiol Regul Integr Comp Physiol 292(6):R2275–R2283. https://doi.org/10.1152/ajpregu.00444.2006
doi: 10.1152/ajpregu.00444.2006 pubmed: 17303685
Kolditz C, Borthaire M, Richard N, Corraze G, Panserat S, Vachot C, Lefevre F, Médale F (2008) Liver and muscle metabolic changes induced by dietary energy content and genetic selection in rainbow trout (Oncorhynchus mykiss). Am J Physiol Regul Integr Comp Physiol 294(4):R1154–R1164. https://doi.org/10.1152/ajpregu.00766.2007
doi: 10.1152/ajpregu.00766.2007 pubmed: 18234747
Lansard M, Panserat S, Seiliez I, Polakof S, Plagnes-Juan E, Geurden I, Médale F, Kaushik S et al (2009) Hepatic protein kinase B (Akt)-target of rapamycin (TOR)-signalling pathways and intermediary metabolism in rainbow trout (Oncorhynchus mykiss) are not significantly affected by feeding plant-based diets. Br J Nutr 102(11):1564–1573. https://doi.org/10.1017/S000711450999095X
doi: 10.1017/S000711450999095X pubmed: 19664314
Wacyk J, Powell M, Rodnick KJ, Overturf K, Hill RA, Hardy R (2012) Dietary protein source significantly alters growth performance, plasma variables and hepatic gene expression in rainbow trout (Oncorhynchus mykiss) fed amino acid balanced diets. Aquaculture 356-357:223–234. https://doi.org/10.1016/j.aquaculture.2012.05.013
doi: 10.1016/j.aquaculture.2012.05.013
Magnoni LJ, Vraskou Y, Palstra A, Planas JV (2012) AMP-activated protein kinase plays an important evolutionary conserved role in the regulation of glucose metabolism in fish skeletal muscle cells. PLoS One 7:e31219. https://doi.org/10.1371/journal.pone.0031219
doi: 10.1371/journal.pone.0031219 pubmed: 22359576 pmcid: 3281052
Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29(9):e45
doi: 10.1093/nar/29.9.e45
Delgado MJ, Cerdá-Reverter JM, Soengas JL (2017) Hypothalamic integration of metabolic, endocrine, and circadian signals in fish: involvement in the control of food intake. Front Neurosci 11:354. https://doi.org/10.3389/fnins.2017.00354
doi: 10.3389/fnins.2017.00354 pubmed: 28694769 pmcid: 5483453
Soengas JL, Cerdá-Reverter JM, Delgado MJ (2018) Central regulation of food intake in fish: an evolutionary perspective. J Mol Endocrinol 60(4):R171–R199. https://doi.org/10.1530/JME-17-0320
doi: 10.1530/JME-17-0320 pubmed: 29467140
Librán-Pérez M, Otero-Rodiño C, López-Patiño MA, Míguez JM, Soengas JL (2014) Central administration of oleate or octanoate activates hypothalamic fatty acid sensing and inhibits food intake in rainbow trout. Physiol Behav 129:272–279. https://doi.org/10.1016/j.physbeh.2014.02.061
doi: 10.1016/j.physbeh.2014.02.061 pubmed: 24631300
Velasco C, Librán-Pérez M, Otero-Rodiño C, López-Patiño MA, Míguez JM, Cerdá-Reverter JM, Soengas JL (2016) Ghrelin modulates hypothalamic fatty acid-sensing and control of food intake in rainbow trout. J Endocrinol 228(1):25–37. https://doi.org/10.1530/JOE-15-0391
doi: 10.1530/JOE-15-0391 pubmed: 26459641
Burnstock G (1959) The innervation of the gut of the brown trout Salmo trutta. Q J Microsc Sci 100:199–220
Seth H, Axelsson M (2010) Sympathetic, parasympathetic and enteric regulation of the gastrointestinal vasculature in rainbow trout (Oncorhynchus mykiss) under normal and postprandial conditions. J Exp Biol 213(18):3118–3126. https://doi.org/10.1242/jeb.043612
doi: 10.1242/jeb.043612 pubmed: 20802112
Velasco C, Librán-Pérez M, Otero-Rodiño C, López-Patiño MA, Míguez JM, Soengas JL (2016) Intracerebroventricular ghrelin treatment affects lipid metabolism in liver of rainbow trout (Oncorhynchus mykiss). Gen Comp Endocrinol 228:33–39. https://doi.org/10.1016/j.ygcen.2016.01.016
doi: 10.1016/j.ygcen.2016.01.016 pubmed: 26828819
Park S, Sol Kim D, Kang S, Keun Shin B (2014) Chronic activation of central AMPK attenuates glucose-stimulated insulin secretion and exacerbates hepatic insulin resistance in diabetic rats. Brain Res Bull 108:18–26. https://doi.org/10.1016/j.brainresbull.2014.08.002
doi: 10.1016/j.brainresbull.2014.08.002 pubmed: 25149877
McCrimmon RJ, Fan X, Ding Y, Zhu W, Jacob RJ, Sherwin RS (2004) Potential role for AMP-activated protein kinase in hypoglycemia sensing in the ventromedial hypothalamus. Diabetes 53(8):1953–1958. https://doi.org/10.2337/diabetes.53.8.1953
doi: 10.2337/diabetes.53.8.1953 pubmed: 15277372
Perin C, Knauf C, Burcelin R (2004) Intracerebroventricular infusion of glucose, insulin, and the adenosine monophosphate-activated kinase activator, 5-aminoimidazole-4-carboxamide-1-β-D-ribofuranoside, controls muscle glycogen synthesis. Endocrinology 145(9):4025–4033. https://doi.org/10.1210/en.2004-0270
doi: 10.1210/en.2004-0270
Claret M, Smith MA, Knauf C, Al-Qassab H, Woods A, Heslegrave A, Piipari K, Emmanuel JJ et al Deletion of LKB1 in pro-opiomelanocortin neurons impairs peripheral glucose homeostasis in mice. Diabetes 60(3):735–745. https://doi.org/10.2337/db10-1055
doi: 10.2337/db10-1055
Librán-Pérez M, Otero-Rodiño C, López-Patiño MA, Míguez JM, Soengas JL (2015) Effects of intracerebroventricular treatment with oleate or octanoate on fatty acid metabolism in Brockmann bodies and liver of rainbow trout. Aquaculture Nutr 21(2):194–205. https://doi.org/10.1111/anu.12158
doi: 10.1111/anu.12158
Obici S, Feng Z, Morgan K, Stein D, Karkanias G, Rossetti L (2002) Central administration of oleic acid inhibits glucose production and food intake. Diabetes 51(2):271–275. https://doi.org/10.2337/diabetes.51.2.271
doi: 10.2337/diabetes.51.2.271 pubmed: 11812732
Han S-M, Namkoong C, Jang PG, Park IS, Hong SW, Katakami H, Chun S, Kim SW et al (2005) Hypothalamic AMP-activated protein kinase mediates counter-regulatory responses to hypoglycaemia in rats. Diabetologia 48(10):2170–2178. https://doi.org/10.1007/s00125-005-1913-1
doi: 10.1007/s00125-005-1913-1 pubmed: 16132951
Fabbri E, Moon TW (2016) Adrenergic signaling in teleost fish liver, a challenging path. Comp Biochem Physiol B Biochem Mol Biol 199:74–86. https://doi.org/10.1016/j.cbpb.2015.10.002
doi: 10.1016/j.cbpb.2015.10.002 pubmed: 26482086
Mommsen TP, Vijayan MM, Moon TW (1999) Cortisol in teleosts: dynamics, mechanisms of action, and metabolic regulation. Rev Fish Biol Fisheries 9(3):211–268. https://doi.org/10.1023/A:100892441872
doi: 10.1023/A:100892441872
Comesaña S, Velasco C, Ceinos RM, López-Patiño MA, Míguez JM, Morais S, Soengas JL (2018) Evidence for the presence in rainbow trout brain of amino acid-sensing systems involved in the control of food intake. Am J Physiol Regul Integr Comp Physiol 314(2):R201–R215. https://doi.org/10.1152/ajpregu.00283.2017
doi: 10.1152/ajpregu.00283.2017 pubmed: 29046316

Auteurs

Marta Conde-Sieira (M)

Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía and Centro de Investigación Mariña, Edificio de Ciencias Experimentais, Universidade de Vigo, 36310, Vigo, Spain.

Valentina Capelli (V)

Departamento de Fisiología, Grupo NeurObesity, CIMUS, Universidade de Santiago de Compostela-Instituto de Investigación Sanitaria and CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706, Santiago de Compostela, Spain.

Rosa Álvarez-Otero (R)

Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía and Centro de Investigación Mariña, Edificio de Ciencias Experimentais, Universidade de Vigo, 36310, Vigo, Spain.

Sara Comesaña (S)

Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía and Centro de Investigación Mariña, Edificio de Ciencias Experimentais, Universidade de Vigo, 36310, Vigo, Spain.

Laura Liñares-Pose (L)

Departamento de Fisiología, Grupo NeurObesity, CIMUS, Universidade de Santiago de Compostela-Instituto de Investigación Sanitaria and CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706, Santiago de Compostela, Spain.

Cristina Velasco (C)

Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía and Centro de Investigación Mariña, Edificio de Ciencias Experimentais, Universidade de Vigo, 36310, Vigo, Spain.

Miguel López (M)

Departamento de Fisiología, Grupo NeurObesity, CIMUS, Universidade de Santiago de Compostela-Instituto de Investigación Sanitaria and CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706, Santiago de Compostela, Spain.

José L Soengas (JL)

Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía and Centro de Investigación Mariña, Edificio de Ciencias Experimentais, Universidade de Vigo, 36310, Vigo, Spain. jsoengas@uvigo.es.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice
Animals Tail Swine Behavior, Animal Animal Husbandry

Classifications MeSH