Better understanding and applications of ammonium 12-molybdophosphate-based diffusive gradient in thin film techniques for measuring Cs in waters.
AMP degradation
Binding gel stability
Cesium
Diffusive gradient in thin film (DGT) technique
Laboratory validation
Time-series accumulation
Journal
Environmental science and pollution research international
ISSN: 1614-7499
Titre abrégé: Environ Sci Pollut Res Int
Pays: Germany
ID NLM: 9441769
Informations de publication
Date de publication:
Jan 2019
Jan 2019
Historique:
received:
27
07
2018
accepted:
08
11
2018
pubmed:
23
11
2018
medline:
15
2
2019
entrez:
23
11
2018
Statut:
ppublish
Résumé
This study deals with further and systematic laboratory evaluation of the already known ammonium 12-molybdophosphate (AMP)-diffusive gradient in thin film (DGT) method, which is used for measuring total Cs concentration in environmental waters. This study confirms that the AMP-binding gel is not stable for pH > 6. In order to reveal a potential impact of AMP degradation on DGT application, time-series experiments were performed by deploying AMP-DGT samplers in Cs-doped moderately basic soft and hard water up to total AMP-binding gel degradation (60 and 175 h of deployment time, respectively). Linear accumulation of Cs by AMP-DGT samplers was observed up to 48 and 58 h in hard and soft waters, respectively. For this deployment time range, AMP-DGT measured over 77 ± 10 and 94 ± 16% of total Cs concentration in hard and soft water, respectively. The difference in DGT response was attributed to Ca
Identifiants
pubmed: 30465239
doi: 10.1007/s11356-018-3719-y
pii: 10.1007/s11356-018-3719-y
doi:
Substances chimiques
Ammonium Compounds
0
Water Pollutants, Chemical
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
1994-2006Subventions
Organisme : Agence Nationale de la Recherche
ID : ANR-11-RSNR-0002
Références
Appl Radiat Isot. 2000 Jul;53(1-2):159-62
pubmed: 10879855
Environ Sci Technol. 2001 Nov 15;35(22):4530-5
pubmed: 11757612
J Environ Radioact. 2008 Dec;99(12):1815-8
pubmed: 18799246
Talanta. 1970 Oct;17(10):955-63
pubmed: 18960823
Anal Chem. 2009 Jul 15;81(14):5889-95
pubmed: 19534484
Anal Chem. 1999 Jun 1;71(11):2186-91
pubmed: 21662756
Anal Chem. 2011 Nov 1;83(21):8293-9
pubmed: 21967720
Environ Sci Technol. 1994 Sep 1;28(9):1623-32
pubmed: 22176365
Environ Sci Technol. 2012 Feb 21;46(4):2267-75
pubmed: 22268706
Anal Chim Acta. 2012 Aug 20;739:37-46
pubmed: 22819048
Talanta. 2012 Aug 15;97:550-6
pubmed: 22841121
Talanta. 2013 Feb 15;105:80-6
pubmed: 23597992
Environ Sci Technol. 2013 Jul 16;47(14):7821-9
pubmed: 23763454
Anal Chem. 2014 Jan 7;86(1):427-34
pubmed: 24251902
Environ Sci Technol. 2014 May 6;48(9):4649-63
pubmed: 24754713
J Environ Radioact. 2015 Jan;139:379-389
pubmed: 24929977
Environ Sci Technol. 2014 Sep 16;48(18):10829-34
pubmed: 25141175
Environ Sci Technol. 2015 May 19;49(10):6109-16
pubmed: 25877251
Spectrochim Acta A Mol Biomol Spectrosc. 2016 Jan 15;153:152-9
pubmed: 26301540
Talanta. 2015 Nov 1;144:890-8
pubmed: 26452905
J Environ Radioact. 2016 Jan;151 Pt 1:328-340
pubmed: 26588202
J Environ Radioact. 2017 Feb;167:100-109
pubmed: 27843066
J Hazard Mater. 2017 Feb 15;324(Pt B):753-761
pubmed: 27890359
Sci Total Environ. 2017 Feb 1;579:1560-1571
pubmed: 27923577
Anal Chim Acta. 2016 Nov 16;945:47-56
pubmed: 27968715
Sci Total Environ. 2018 Jan 15;612:1079-1090
pubmed: 28892848
J Hazard Mater. 2018 Feb 15;344:511-530
pubmed: 29100131