Ribosome assembly coming into focus.
Journal
Nature reviews. Molecular cell biology
ISSN: 1471-0080
Titre abrégé: Nat Rev Mol Cell Biol
Pays: England
ID NLM: 100962782
Informations de publication
Date de publication:
02 2019
02 2019
Historique:
pubmed:
24
11
2018
medline:
18
12
2019
entrez:
24
11
2018
Statut:
ppublish
Résumé
In the past 25 years, genetic and biochemical analyses of ribosome assembly in yeast have identified most of the factors that participate in this complex pathway and have generated models for the mechanisms driving the assembly. More recently, the publication of numerous cryo-electron microscopy structures of yeast ribosome assembly intermediates has provided near-atomic resolution snapshots of ribosome precursor particles. Satisfyingly, these structural data support the genetic and biochemical models and provide additional mechanistic insight into ribosome assembly. In this Review, we discuss the mechanisms of assembly of the yeast small ribosomal subunit and large ribosomal subunit in the nucleolus, nucleus and cytoplasm. Particular emphasis is placed on concepts such as the mechanisms of RNA compaction, the functions of molecular switches and molecular mimicry, the irreversibility of assembly checkpoints and the roles of structural and functional proofreading of pre-ribosomal particles.
Identifiants
pubmed: 30467428
doi: 10.1038/s41580-018-0078-y
pii: 10.1038/s41580-018-0078-y
pmc: PMC7725133
mid: NIHMS1067251
doi:
Substances chimiques
RNA
63231-63-0
Types de publication
Journal Article
Review
Langues
eng
Sous-ensembles de citation
IM
Pagination
116-131Subventions
Organisme : NIGMS NIH HHS
ID : DP2 GM123459
Pays : United States
Organisme : NIGMS NIH HHS
ID : R01 GM028301
Pays : United States
Références
de la Cruz, J., Karbstein, K. & Woolford, J. L. Functions of ribosomal proteins in assembly of eukaryotic ribosomes in vivo. Annu. Rev. Biochem. 84, 93–129 (2015).
pubmed: 25706898
pmcid: 4772166
Rabl, J., Leibundgut, M., Ataide, S. F., Haag, A. & Ban, N. Crystal structure of the eukaryotic 40S ribosomal subunit in complex with initiation factor 1. Science 331, 730–736 (2011).
pubmed: 21205638
Klinge, S., Voigts-Hoffmann, F., Leibundgut, M., Arpagaus, S. & Ban, N. Crystal structure of the eukaryotic 60S ribosomal subunit in complex with initiation factor 6. Science 334, 941–948 (2011).
pubmed: 22052974
Ben-Shem, A. et al. The structure of the eukaryotic ribosome at 3.0 Å resolution. Science 334, 1524–1529 (2011).
pubmed: 22096102
Klinge, S., Voigts-Hoffmann, F., Leibundgut, M. & Ban, N. Atomic structures of the eukaryotic ribosome. Trends Biochem. Sci. 37, 189–198 (2012).
pubmed: 22436288
Melnikov, S. et al. One core, two shells: bacterial and eukaryotic ribosomes. Nat. Struct. Mol. Biol. 19, 560–567 (2012).
pubmed: 22664983
de la Cruz, J. et al. Feedback regulation of ribosome assembly. Curr. Genet. 64, 393–404 (2018).
pubmed: 29022131
Woolford, J. L. & Baserga, S. J. Ribosome biogenesis in the yeast Saccharomyces cerevisiae. Genetics 195, 643–681 (2013).
pubmed: 24190922
pmcid: 3813855
Engel, C., Sainsbury, S., Cheung, A. C., Kostrewa, D. & Cramer, P. RNA polymerase I structure and transcription regulation. Nature 502, 650–655 (2013).
pubmed: 24153182
Fernández-Tornero, C. et al. Crystal structure of the 14-subunit RNA polymerase I. Nature 502, 644–649 (2013).
pubmed: 24153184
Engel, C., Plitzko, J. & Cramer, P. RNA polymerase I-Rrn3 complex at 4.8 Å resolution. Nat. Commun. 7, 12129 (2016).
pubmed: 27418309
pmcid: 4947163
Tafur, L. et al. Molecular structures of transcribing RNA polymerase I. Mol. Cell 64, 1135–1143 (2016).
pubmed: 27867008
pmcid: 5179497
Neyer, S. et al. Structure of RNA polymerase I transcribing ribosomal DNA genes. Nature 540, 607–610 (2016).
Engel, C. et al. Structural basis of RNA polymerase I transcription initiation. Cell 169, 120–131 (2017).
pubmed: 28340337
Nogi, Y., Yano, R. & Nomura, M. Synthesis of large rRNAs by RNA polymerase II in mutants of Saccharomyces cerevisiae defective in RNA polymerase I. Proc. Natl Acad. Sci. USA 88, 3962–3966 (1991).
pubmed: 2023944
Torreira, E. et al. The dynamic assembly of distinct RNA polymerase I complexes modulates rDNA transcription. eLife 6, e20832 (2017).
pubmed: 28262097
pmcid: 5362265
Fernández-Pevida, A., Kressler, D. & de la Cruz, J. Processing of preribosomal RNA in Saccharomyces cerevisiae. WIREs RNA 6, 191–209 (2015).
pubmed: 25327757
Udem, S. A. & Warner, J. R. Ribosomal RNA synthesis in Saccharomyces cerevisiae. J. Mol. Biol. 65, 227–242 (1972).
pubmed: 4557192
Trapman, J., Retèl, J. & Planta, R. J. Ribosomal precursor particles from yeast. Exp. Cell Res. 90, 95–104 (1975).
pubmed: 1122947
Osheim, Y. N. et al. Pre-18S ribosomal RNA is structurally compacted into the SSU processome prior to being cleaved from nascent transcripts in Saccharomyces cerevisiae. Mol. Cell 16, 943–954 (2004).
pubmed: 15610737
Kos, M. & Tollervey, D. Yeast pre-rRNA processing and modification occur cotranscriptionally. Mol. Cell 37, 809–820 (2010).
pubmed: 20347423
pmcid: 2860240
Sharma, S. & Lafontaine, D. L. J. ‘View from a bridge’: a new perspective on eukaryotic rRNA base modification. Trends Biochem. Sci. 40, 560–575 (2015).
pubmed: 26410597
Kiss, T., Fayet-Lebaron, E. & Jády, B. E. Box H/ACA small ribonucleoproteins. Mol. Cell 37, 597–606 (2010).
pubmed: 20227365
Watkins, N. J. & Bohnsack, M. T. The box C/D and H/ACA snoRNPs: key players in the modification, processing and the dynamic folding of ribosomal RNA. Wiley Interdiscip. Rev. RNA 3, 397–414 (2011).
pubmed: 22065625
Henry, Y. et al. The 5ʹ end of yeast 5.8S rRNA is generated by exonucleases from an upstream cleavage site. EMBO J. 13, 2452–2463 (1994).
pubmed: 7515008
pmcid: 395111
Lygerou, Z., Allmang, C., Tollervey, D. & Séraphin, B. Accurate processing of a eukaryotic precursor ribosomal RNA by ribonuclease MRP in vitro. Science 272, 268–270 (1996).
pubmed: 8602511
Martin, R., Straub, A. U., Doebele, C. & Bohnsack, M. T. DExD/H-box RNA helicases in ribosome biogenesis. RNA Biol. 10, 4–18 (2013).
pubmed: 22922795
pmcid: 3590236
Rodríguez-Galán, O., García-Gómez, J. J. & de la Cruz, J. Yeast and human RNA helicases involved in ribosome biogenesis: current status and perspectives. Biochim. Biophys. Acta 1829, 775–790 (2013).
pubmed: 23357782
Kressler, D., Hurt, E., Bergler, H. & Bassler, J. The power of AAA-ATPases on the road of pre-60S ribosome maturation — molecular machines that strip pre-ribosomal particles. Biochim. Biophys. Acta 1823, 92–100 (2011).
pubmed: 21763358
Pillet, B., Mitterer, V., Kressler, D. & Pertschy, B. Hold on to your friends: dedicated chaperones of ribosomal proteins: dedicated chaperones mediate the safe transfer of ribosomal proteins to their site of pre-ribosome incorporation. BioEssays 39, 1–12 (2017).
pubmed: 27859409
Peña, C., Hurt, E. & Panse, V. G. Eukaryotic ribosome assembly, transport and quality control. Nat. Struct. Mol. Biol. 24, 689–699 (2017).
pubmed: 28880863
Miller, O. L. & Beatty, B. R. Visualization of nucleolar genes. Science 164, 955–957 (1969).
pubmed: 5813982
Mougey, E. B. et al. The terminal balls characteristic of eukaryotic rRNA transcription units in chromatin spreads are rRNA processing complexes. Genes Dev. 7, 1609–1619 (1993).
pubmed: 8339936
Mougey, E. B., Pape, L. K. & Sollner-Webb, B. A. U3 small nuclear ribonucleoprotein-requiring processing event in the 5' external transcribed spacer of Xenopus precursor rRNA. Mol. Cell. Biol. 13, 5990–5998 (1993).
pubmed: 8413202
pmcid: 364653
Dragon, F. et al. A large nucleolar U3 ribonucleoprotein required for 18S ribosomal RNA biogenesis. Nature 417, 967–970 (2002).
pubmed: 12068309
Grandi, P. et al. 90S pre-ribosomes include the 35S pre-rRNA, the U3 snoRNP, and 40S subunit processing factors but predominantly lack 60S synthesis factors. Mol. Cell 10, 105–115 (2002).
Kornprobst, M. et al. Architecture of the 90S pre-ribosome: a structural view on the birth of the eukaryotic ribosome. Cell 166, 380–393 (2016).
pubmed: 27419870
Chaker-Margot, M., Barandun, J., Hunziker, M. & Klinge, S. Architecture of the yeast small subunit processome. Science 355, eaal1880 (2017).
pubmed: 27980088
Sun, Q. et al. Molecular architecture of the 90S small subunit pre-ribosome. eLife 6, e22086 (2017).
pubmed: 28244370
pmcid: 5354517
Rorbach, J., Aibara, S. & Amunts, A. Ribosome origami. Nat. Struct. Mol. Biol. 24, 879–881 (2017).
pubmed: 29112687
Chaker-Margot, M., Hunziker, M., Barandun, J., Dill, B. D. & Klinge, S. Stage-specific assembly events of the 6-MDa small-subunit processome initiate eukaryotic ribosome biogenesis. Nat. Struct. Mol. Biol. 22, 920–923 (2015).
pubmed: 26479197
Zhang, L., Wu, C., Cai, G., Chen, S. & Ye, K. Stepwise and dynamic assembly of the earliest precursors of small ribosomal subunits in yeast. Genes Dev. 30, 718–732 (2016).
pubmed: 26980190
pmcid: 4803056
Chen, W., Xie, Z., Yang, F. & Ye, K. Stepwise assembly of the earliest precursors of large ribosomal subunits in yeast. Nucleic Acids Res. 45, 6837–6847 (2017). References 41–43 describe ribosome assembly as a function of transcription using truncated rRNA mimics.
pubmed: 28402444
pmcid: 5499802
Krogan, N. J. et al. High-definition macromolecular composition of yeast RNA-processing complexes. Mol. Cell 13, 225–239 (2004).
pubmed: 14759368
Dosil, M. & Bustelo, X. R. Functional characterization of Pwp2, a WD family protein essential for the assembly of the 90S pre-ribosomal particle. J. Biol. Chem. 279, 37385–37397 (2004).
pubmed: 15231838
Pöll, G. et al. In vitro reconstitution of yeast tUTP/UTP A and UTP B subcomplexes provides new insights into their modular architecture. PLOS ONE 9, e114898 (2014).
pubmed: 25501974
pmcid: 4264851
Hunziker, M. et al. UtpA and UtpB chaperone nascent pre-ribosomal RNA and U3 snoRNA to initiate eukaryotic ribosome assembly. Nat. Commun. 7, 12090 (2016).
pubmed: 27354316
pmcid: 4931317
Pérez-Fernández, J., Román, A., De Las Rivas, J., Bustelo, X. R. & Dosil, M. The 90S preribosome is a multimodular structure that is assembled through a hierarchical mechanism. Mol. Cell. Biol. 27, 5414–5429 (2007).
pubmed: 17515605
pmcid: 1952102
Pérez-Fernández, J., Martín-Marcos, P. & Dosil, M. Elucidation of the assembly events required for the recruitment of Utp20, Imp4 and Bms1 onto nascent pre-ribosomes. Nucleic Acids Res. 39, 8105–8121 (2011).
pubmed: 21724601
pmcid: 3185420
Barandun, J., Hunziker, M. & Klinge, S. Assembly and structure of the SSU processome-a nucleolar precursor of the small ribosomal subunit. Curr. Opin. Struct. Biol. 49, 85–93 (2018).
pubmed: 29414516
Beltrame, M. & Tollervey, D. Identification and functional analysis of two U3 binding sites on yeast pre-ribosomal. RNA 11, 1531–1542 (1992).
Beltrame, M., Henry, Y. & Tollervey, D. Mutational analysis of an essential binding site for the U3 snoRNA in the 5ʹ external transcribed spacer of yeast pre-rRNA. Nucleic Acids Res. 22, 4057–4065 (1994).
pubmed: 7937130
pmcid: 331890
Marmier-Gourrier, N., Cléry, A., Schlotter, F., Senty-Ségault, V. & Branlant, C. A second base pair interaction between U3 small nucleolar RNA and the 5ʹ-ETS region is required for early cleavage of the yeast pre-ribosomal RNA. Nucleic Acids Res. 39, 9731–9745 (2011).
pubmed: 21890904
pmcid: 3239212
Dutca, L. M., Gallagher, J. E. G. & Baserga, S. J. The initial U3 snoRNA: pre-rRNA base pairing interaction required for pre-18S rRNA folding revealed by in vivo chemical probing. Nucleic Acids Res. 39, 5164–5180 (2011).
pubmed: 21349877
pmcid: 3130255
Puchta, O. et al. Network of epistatic interactions within a yeast snoRNA. Science 352, 840–844 (2016).
pubmed: 27080103
pmcid: 5137784
Cheng, J., Kellner, N., Berninghausen, O., Hurt, E. & Beckmann, R. 3.2-Å-resolution structure of the 90S preribosome before A1 pre-rRNA cleavage. Nat. Struct. Mol. Biol. 24, 954–964 (2017).
pubmed: 28967883
Barandun, J. et al. The complete structure of the small-subunit processome. Nat. Struct. Mol. Biol. 24, 944–953 (2017). References 56 and 57 describe the structure of the SSU processome at near-atomic resolution.
pubmed: 28945246
Sá-Moura, B. et al. Mpp10 represents a platform for the interaction of multiple factors within the 90S pre-ribosome. PLOS ONE 12, e0183272 (2017).
pubmed: 28813493
pmcid: 5558966
Koš, M. & Tollervey, D. The putative RNA helicase Dbp4p is required for release of the U14 snoRNA from preribosomes in Saccharomyces cerevisiae. Mol. Cell 20, 53–64 (2005).
pubmed: 16209945
Martin, R. et al. A pre-ribosomal RNA interaction network involving snoRNAs and the Rok1 helicase. RNA 20, 1173–1182 (2014).
pubmed: 24947498
pmcid: 4105744
Wells, G. R. et al. The ribosome biogenesis factor yUtp23/hUTP23 coordinates key interactions in the yeast and human pre-40S particle and hUTP23 contains an essential PIN domain. Nucleic Acids Res. 45, 4796–4809 (2017).
pubmed: 28082392
pmcid: 5416842
Soltanieh, S., Lapensée, M. & Dragon, F. Nucleolar proteins Bfr2 and Enp2 interact with DEAD-box RNA helicase Dbp4 in two different complexes. Nucleic Acids Res. 42, 3194–3206 (2014).
pubmed: 24357410
Shu, S. & Ye, K. Structural and functional analysis of ribosome assembly factor Efg1. Nucleic Acids Res. 46, 2096–2106 (2018).
pubmed: 29361028
pmcid: 5829643
Segerstolpe, A., Lundkvist, P., Osheim, Y. N., Beyer, A. L. & Wieslander, L. Mrd1p binds to pre-rRNA early during transcription independent of U3 snoRNA and is required for compaction of the pre-rRNA into small subunit processomes. Nucleic Acids Res. 36, 4364–4380 (2008).
pubmed: 18586827
pmcid: 2490760
Wery, M., Ruidant, S., Schillewaert, S., Leporé, N. & Lafontaine, D. L. J. The nuclear poly(A) polymerase and exosome cofactor Trf5 is recruited cotranscriptionally to nucleolar surveillance. RNA 15, 406–419 (2009).
pubmed: 19141608
pmcid: 2657017
Gamalinda, M. et al. A hierarchical model for assembly of eukaryotic 60S ribosomal subunit domains. Genes Dev. 28, 198–210 (2014).
pubmed: 24449272
pmcid: 3909792
Wells, G. R. et al. The PIN domain endonuclease Utp24 cleaves pre-ribosomal RNA at two coupled sites in yeast and humans. Nucleic Acids Res. 44, 5399–5409 (2016).
pubmed: 27034467
pmcid: 4914098
Tomecki, R., Labno, A., Drazkowska, K., Cysewski, D. & Dziembowski, A. hUTP24 is essential for processing of the human rRNA precursor at site A1, but not at site A0. RNA Biol. 12, 1010–1029 (2015).
pubmed: 26237581
pmcid: 4615547
Calviño, F. R. et al. Structural basis for 5ʹ-ETS recognition by Utp4 at the early stages of ribosome biogenesis. PLOS ONE 12, e0178752 (2017).
pubmed: 28575120
pmcid: 5456268
Zhang, C. et al. Integrative structural analysis of the UTPB complex, an early assembly factor for eukaryotic small ribosomal subunits. Nucleic Acids Res. 44, 7475–7486 (2016).
pubmed: 27330138
pmcid: 5009746
Zhang, C. et al. Structure of Utp21 tandem WD domain provides insight into the organization of the UTPB complex involved in ribosome synthesis. PLOS ONE 9, e86540 (2014).
pubmed: 24466140
pmcid: 3897721
Boissier, F., Schmidt, C. M., Linnemann, J., Fribourg, S. & Perez-Fernandez, J. Pwp2 mediates UTP-B assembly via two structurally independent domains. Sci. Rep. 7, 3169 (2017).
pubmed: 28600509
pmcid: 5466602
Zhang, L., Lin, J. & Ye, K. Structural and functional analysis of the U3 snoRNA binding protein Rrp9. RNA 19, 701–711 (2013).
pubmed: 23509373
pmcid: 3677284
Delprato, A. et al. Crucial role of the Rcl1p-Bms1p interaction for yeast pre-ribosomal RNA processing. Nucleic Acids Res. 42, 10161–10172 (2014).
pubmed: 25064857
pmcid: 4150785
Thomas, S. R., Keller, C. A., Szyk, A., Cannon, J. R. & LaRonde-LeBlanc, N. A. Structural insight into the functional mechanism of Nep1/Emg1 N1-specific pseudouridine methyltransferase in ribosome biogenesis. Nucleic Acids Res. 39, 2445–2457 (2011).
pubmed: 21087996
Zheng, S., Lan, P., Liu, X. & Ye, K. Interaction between ribosome assembly factors Krr1 and Faf1 is essential for formation of small ribosomal subunit in yeast. J. Biol. Chem. 289, 22692–22703 (2014).
pubmed: 24990943
Lin, J., Lu, J., Feng, Y., Sun, M. & Ye, K. An RNA-binding complex involved in ribosome biogenesis contains a protein with homology to tRNA CCA-adding enzyme. PLOS Biol. 11, e1001669 (2013).
pubmed: 24130456
pmcid: 3794860
Lim, Y. H., Charette, J. M. & Baserga, S. J. Assembling a protein-protein interaction map of the SSU processome from existing datasets. PLOS ONE 6, e17701 (2011).
pubmed: 21423703
pmcid: 3053386
Bassler, J. et al. Interaction network of the ribosome assembly machinery from a eukaryotic thermophile. Protein Sci. 26, 327–342 (2017).
pubmed: 27863450
pmcid: 5275739
Vincent, N. G., Charette, J. M. & Baserga, S. J. The SSU processome interactome in Saccharomyces cerevisiae reveals novel protein subcomplexes. RNA 24, 77–89 (2018).
pubmed: 29054886
pmcid: 5733573
Sharma, S. et al. Yeast Kre33 and human NAT10 are conserved 18S rRNA cytosine acetyltransferases that modify tRNAs assisted by the adaptor Tan1/THUMPD1. Nucleic Acids Res. 43, 2242–2258 (2015).
pubmed: 25653167
pmcid: 4344512
Wegierski, T., Billy, E., Nasr, F. & Filipowicz, W. Bms1p, a G-domain-containing protein, associates with Rcl1p and is required for 18S rRNA biogenesis in yeast. RNA 7, 1254–1267 (2001).
pubmed: 11565748
pmcid: 1370170
Gelperin, D., Horton, L., Beckman, J., Hensold, J. & Lemmon, S. K. Bms1p, a novel GTP-binding protein, and the related Tsr1p are required for distinct steps of 40S ribosome biogenesis in yeast. RNA 7, 1268–1283 (2001).
pubmed: 11565749
pmcid: 1370171
Sardana, R. et al. The DEAH-box helicase Dhr1 dissociates U3 from the pre-rRNA to promote formation of the central pseudoknot. PLOS Biol. 13, e1002083 (2015).
pubmed: 25710520
pmcid: 4340053
Zhu, J., Liu, X., Anjos, M., Correll, C. C. & Johnson, A. W. Utp14 recruits and activates the RNA helicase Dhr1 to undock U3 snoRNA from the pre-ribosome. Mol. Cell. Biol. 36, 965–978 (2016).
pubmed: 26729466
pmcid: 4810474
Thoms, M. et al. The exosome is recruited to RNA substrates through specific adaptor proteins. Cell 162, 1029–1038 (2015).
pubmed: 26317469
Mitchell, P. Rrp47 and the function of the Sas10/C1D domain. Biochem. Soc. Trans. 38, 1088–1092 (2010).
pubmed: 20659009
Venema, J. & Tollervey, D. RRP5 is required for formation of both 18S and 5.8S rRNA in yeast. EMBO J. 15, 5701–5714 (1996).
pubmed: 8896463
pmcid: 452314
Milkereit, P. et al. Maturation and intranuclear transport of pre-ribosomes requires Noc proteins. Cell 105, 499–509 (2001).
pubmed: 11371346
Young, C. L. & Karbstein, K. The roles of S1 RNA-binding domains in Rrp5’s interactions with pre-rRNA. RNA 17, 512–521 (2011).
pubmed: 21233221
pmcid: 3039150
Hierlmeier, T. et al. Rrp5p, Noc1p and Noc2p form a protein module which is part of early large ribosomal subunit precursors in S. cerevisiae. Nucleic Acids Res. 40, 650–659 (2012).
Lebaron, S. et al. Rrp5 binding at multiple sites coordinates pre-rRNA processing and assembly. Mol. Cell 52, 707–719 (2013).
pubmed: 24239293
pmcid: 3991325
Sun, C. & Woolford, J. L. The yeast NOP4 gene product is an essential nucleolar protein required for pre-rRNA processing and accumulation of 60S ribosomal subunits. EMBO J. 13, 3127–3135 (1994).
pubmed: 8039505
pmcid: 395203
Bergès, T., Petfalski, E., Tollervey, D. & Hurt, E. C. Synthetic lethality with fibrillarin identifies NOP77p, a nucleolar protein required for pre-rRNA processing and modification. EMBO J. 13, 3136–3148 (1994).
pubmed: 8039506
pmcid: 395205
Granneman, S., Petfalski, E. & Tollervey, D. A cluster of ribosome synthesis factors regulate pre-rRNA folding and 5.8S rRNA maturation by the Rat1 exonuclease. 30, 4006–4019 (2011).
Dez, C. et al. Npa1p, a component of very early pre-60S ribosomal particles, associates with a subset of small nucleolar RNPs required for peptidyl transferase center modification. Mol. Cell. Biol. 24, 6324–6337 (2004).
pubmed: 15226434
pmcid: 434229
Rosado, I. V. et al. Characterization of Saccharomyces cerevisiae Npa2p (Urb2p) reveals a low-molecular-mass complex containing Dbp6p, Npa1p (Urb1p), Nop8p, and Rsa3p involved in early steps of 60S ribosomal subunit biogenesis. Mol. Cell. Biol. 27, 1207–1221 (2007).
pubmed: 17145778
Joret, C. et al. The Npa1p complex chaperones the assembly of the earliest eukaryotic large ribosomal subunit precursor. PLOS Genet. 14, e1007597 (2018).
pubmed: 30169518
pmcid: 6136799
Sloan, K. E. & Bohnsack, M. T. Unravelling the mechanisms of RNA helicase regulation. Trends Biochem. Sci. 43, 237–250 (2018).
pubmed: 29486979
Turowski, T. W. & Tollervey, D. Cotranscriptional events in eukaryotic ribosome synthesis. Wiley Interdiscip. Rev. RNA 6, 129–139 (2015).
pubmed: 25176256
Allmang, C. & Tollervey, D. The role of the 3ʹ external transcribed spacer in yeast pre-rRNA processing. J. Mol. Biol. 278, 67–78 (1998).
pubmed: 9571034
Eppens, N. A., Rensen, S., Granneman, S., Raué, H. A. & Venema, J. The roles of Rrp5p in the synthesis of yeast 18S and 5.8S rRNA can be functionally and physically separated. RNA 5, 779–793 (1999).
pubmed: 10376877
pmcid: 1369804
Sanghai, Z. A. et al. Modular assembly of the nucleolar pre-60S ribosomal subunit. Nature 556, 126–129 (2018).
pubmed: 29512650
pmcid: 6118127
Kater, L. et al. Visualizing the assembly pathway of nucleolar pre-60S ribosomes. Cell 171, 1599–1610 (2017).
pubmed: 29245012
pmcid: 5745149
Zhou, D. et al. Cryo-EM structure of an early precursor of large ribosomal subunit reveals a half-assembled intermediate. Protein Cell https://doi.org/10.1007/s13238-018-0526-7 (2018). References 103–105 describe the structures of nucleolar pre-60S precursors.
doi: 10.1007/s13238-018-0526-7
pubmed: 30588557
pmcid: 6160387
Kressler, D., Roser, D., Pertschy, B. & Hurt, E. The AAA ATPase Rix7 powers progression of ribosome biogenesis by stripping Nsa1 from pre-60S particles. J. Cell Biol. 181, 935–944 (2008).
pubmed: 18559667
pmcid: 2426938
Bradatsch, B. et al. Structure of the pre-60S ribosomal subunit with nuclear export factor Arx1 bound at the exit tunnel. Nat. Struct. Mol. Biol. 19, 1234–1241 (2012).
pubmed: 23142978
pmcid: 3678077
Wu, S. et al. Diverse roles of assembly factors revealed by structures of late nuclear pre-60S ribosomes. Nature 534, 133–137 (2016). This paper describes the high-resolution structure of the late nucleolar Nog2 particle.
pubmed: 27251291
pmcid: 5237361
Biedka, S. et al. Hierarchical recruitment of ribosomal proteins and assembly factors remodels nucleolar pre-60S ribosomes. J. Cell Biol. 217, 2503–2518 (2018).
pubmed: 29691304
pmcid: 6028539
Zhang, J. et al. Assembly factors Rpf2 and Rrs1 recruit 5S rRNA and ribosomal proteins rpL5 and rpL11 into nascent ribosomes. Genes Dev. 21, 2580–2592 (2007).
pubmed: 17938242
pmcid: 2000323
Kressler, D. et al. Synchronizing nuclear import of ribosomal proteins with ribosome assembly. Science 338, 666–671 (2012).
pubmed: 23118189
Calviño, F. R. et al. Symportin 1 chaperones 5S RNP assembly during ribosome biogenesis by occupying an essential rRNA-binding site. Nat. Commun. 6, 6510 (2015).
pubmed: 25849277
pmcid: 4396368
Talkish, J., Zhang, J., Jakovljevic, J., Horsey, E. W. & Woolford, J. L. Hierarchical recruitment into nascent ribosomes of assembly factors required for 27SB pre-rRNA processing in Saccharomyces cerevisiae. Nucleic Acids Res. 40, 8646–8661 (2012).
pubmed: 22735702
pmcid: 3458554
Bassler, J. et al. The AAA-ATPase Rea1 drives removal of biogenesis factors during multiple stages of 60S ribosome assembly. Mol. Cell 38, 712–721 (2010).
pubmed: 20542003
pmcid: 3372891
Wegrecki, M., Rodríguez-Galán, O., de la Cruz, J. & Bravo, J. The structure of Erb1-Ytm1 complex reveals the functional importance of a high-affinity binding between two β-propellers during the assembly of large ribosomal subunits in eukaryotes. Nucleic Acids Res. 43, 11017–11030 (2015).
pubmed: 26476442
pmcid: 4678814
Romes, E. M., Sobhany, M. & Stanley, R. E. The crystal structure of the ubiquitin-like domain of ribosome assembly factor Ytm1 and characterization of its interaction with the AAA-ATPase Midasin. J. Biol. Chem. 291, 882–893 (2016).
pubmed: 26601951
Thoms, M., Ahmed, Y. L., Maddi, K., Hurt, E. & Sinning, I. Concerted removal of the Erb1–Ytm1 complex in ribosome biogenesis relies on an elaborate interface. Nucleic Acids Res. 44, 926–939 (2016).
pubmed: 26657628
Konikkat, S., Biedka, S. & Woolford, J. L. The assembly factor Erb1 functions in multiple remodeling events during 60S ribosomal subunit assembly in S. cerevisiae. Nucleic Acids Res. 45, 4853–4865 (2017).
pubmed: 28115637
pmcid: 5416829
Barrio-Garcia, C. et al. Architecture of the Rix1-Rea1 checkpoint machinery during pre-60S-ribosome remodeling. Nat. Struct. Mol. Biol. 23, 37–44 (2016). This paper describes the architecture of the nuclear pre-60S particle containing the AAA-ATPase midasin.
pubmed: 26619264
Mitchell, P., Petfalski, E., Shevchenko, A., Mann, M. & Tollervey, D. The exosome: a conserved eukaryotic RNA processing complex containing multiple 3ʹ→5ʹ exoribonucleases. Cell 91, 457–466 (1997).
pubmed: 9390555
Falk, S. et al. Structural insights into the interaction of the nuclear exosome helicase Mtr4 with the preribosomal protein Nop53. RNA 23, 1780–1787 (2017).
pubmed: 28883156
pmcid: 5688999
Rodríguez-Galán, O., García-Gómez, J. J., Kressler, D. & de la Cruz, J. Immature large ribosomal subunits containing the 7S pre-rRNA can engage in translation in Saccharomyces cerevisiae. RNA Biol. 12, 838–846 (2015).
pubmed: 26151772
pmcid: 4615593
Sarkar, A. et al. Preribosomes escaping from the nucleus are caught during translation by cytoplasmic quality control. Nat. Struct. Mol. Biol. 24, 1107–1115 (2017).
pubmed: 29083413
Allmang, C., Mitchell, P., Petfalski, E. & Tollervey, D. Degradation of ribosomal RNA precursors by the exosome. Nucleic Acids Res. 28, 1684–1691 (2000).
pubmed: 10734186
pmcid: 102825
Castle, C. D. et al. Las1 interacts with Grc3 polynucleotide kinase and is required for ribosome synthesis in Saccharomyces cerevisiae. Nucleic Acids Res. 41, 1135–1150 (2013).
pubmed: 23175604
Pillon, M. C., Sobhany, M., Borgnia, M. J., Williams, J. G. & Stanley, R. E. Grc3 programs the essential endoribonuclease Las1 for specific RNA cleavage. Proc. Natl Acad. Sci. USA 114, E5530–E5538 (2017).
pubmed: 28652339
Gasse, L., Flemming, D. & Hurt, E. Coordinated ribosomal ITS2 RNA processing by the Las1 complex integrating endonuclease, polynucleotide kinase, and exonuclease activities. Mol. Cell 60, 808–815 (2015).
pubmed: 26638174
Schillewaert, S., Wacheul, L., Lhomme, F. & Lafontaine, D. L. J. The evolutionarily conserved protein Las1 is required for pre-rRNA processing at both ends of ITS2. Mol. Cell. Biol. 32, 430–444 (2012).
pubmed: 22083961
pmcid: 3255765
Fromm, L. et al. Reconstitution of the complete pathway of ITS2 processing at the pre-ribosome. Nat. Commun. 8, 1787 (2017).
pubmed: 29176610
pmcid: 5702609
Schuller, J. M., Falk, S., Fromm, L., Hurt, E. & Conti, E. Structure of the nuclear exosome captured on a maturing preribosome. Science 360, 219–222 (2018).
pubmed: 29519915
Thomson, E. & Tollervey, D. The final step in 5.8S rRNA processing is cytoplasmic in Saccharomyces cerevisiae. Mol. Cell. Biol. 30, 976–984 (2010).
pubmed: 20008552
Leidig, C. et al. 60S ribosome biogenesis requires rotation of the 5S ribonucleoprotein particle. Nat. Commun. 5, 3491 (2014).
pubmed: 24662372
Kharde, S., Calviño, F. R., Gumiero, A., Wild, K. & Sinning, I. The structure of Rpf2-Rrs1 explains its role in ribosome biogenesis. Nucleic Acids Res. 43, 7083–7095 (2015).
pubmed: 26117542
pmcid: 4538828
Madru, C. et al. Chaperoning 5S RNA assembly. Genes Dev. 29, 1432–1446 (2015).
pubmed: 26159998
pmcid: 4511217
Asano, N. et al. Structural and functional analysis of the Rpf2–Rrs1 complex in ribosome biogenesis. Nucleic Acids Res. 43, 4746–4757 (2015).
pubmed: 25855814
pmcid: 4482071
Karbstein, K. Quality control mechanisms during ribosome maturation. Trends Cell Biol. 23, 242–250 (2013).
pubmed: 23375955
pmcid: 3640646
Greber, B. J., Boehringer, D., Montellese, C. & Ban, N. Cryo-EM structures of Arx1 and maturation factors Rei1 and Jjj1 bound to the 60S ribosomal subunit. Nat. Struct. Mol. Biol. 19, 1228–1233 (2012).
pubmed: 23142985
Peisker, K. et al. Ribosome-associated complex binds to ribosomes in close proximity of Rpl31 at the exit of the polypeptide tunnel in yeast. Mol. Biol. Cell 19, 5279–5288 (2008).
pubmed: 18829863
pmcid: 2592665
Kramer, G., Boehringer, D., Ban, N. & Bukau, B. The ribosome as a platform for co-translational processing, folding and targeting of newly synthesized proteins. Nat. Struct. Mol. Biol. 16, 589–597 (2009).
pubmed: 19491936
Matsuo, Y. et al. Coupled GTPase and remodelling ATPase activities form a checkpoint for ribosome export. Nature 505, 112–116 (2014).
pubmed: 24240281
Manikas, R.-G., Thomson, E., Thoms, M. & Hurt, E. The K
pubmed: 26823502
pmcid: 4770245
Ma, C. et al. Structural snapshot of cytoplasmic pre-60S ribosomal particles bound by Nmd3, Lsg1, Tif6 and Reh1. Nat. Struct. Mol. Biol. 24, 214–220 (2017).
pubmed: 28112732
pmcid: 5555584
Malyutin, A. G., Musalgaonkar, S., Patchett, S., Frank, J. & Johnson, A. W. Nmd3 is a structural mimic of eIF5A, and activates the cpGTPase Lsg1 during 60S ribosome biogenesis. EMBO J. 36, 854–868 (2017). References 137, 142 and 143 describe the structures of cytoplasmic precursors of the large ribosomal subunit.
pubmed: 28179369
pmcid: 5376978
Sarkar, A., Pech, M., Thoms, M., Beckmann, R. & Hurt, E. Ribosome-stalk biogenesis is coupled with recruitment of nuclear-export factor to the nascent 60S subunit. Nat. Struct. Mol. Biol. 23, 1074–1082 (2016).
pubmed: 27775710
Rodnina, M. V., Fischer, N., Maracci, C. & Stark, H. Ribosome dynamics during decoding. Phil. Trans. R. Soc. B, Biol. Sci. 372, 20160182 (2017).
Panse, V. G. & Johnson, A. W. Maturation of eukaryotic ribosomes: acquisition of functionality. Trends Biochem. Sci. 35, 260–266 (2010).
pubmed: 20137954
pmcid: 2866757
Lo, K.-Y. et al. Defining the pathway of cytoplasmic maturation of the 60S ribosomal subunit. Mol. Cell 39, 196–208 (2010).
Pertschy, B. et al. Cytoplasmic recycling of 60S preribosomal factors depends on the AAA protein Drg1. Mol. Cell. Biol. 27, 6581–6592 (2007).
pubmed: 17646390
pmcid: 2099225
Kappel, L. et al. Rlp24 activates the AAA-ATPase Drg1 to initiate cytoplasmic pre-60S maturation. J. Cell Biol. 199, 771–782 (2012).
pubmed: 23185031
pmcid: 3514788
Altvater, M. et al. Targeted proteomics reveals compositional dynamics of 60S pre-ribosomes after nuclear export. Mol. Syst. Biol. 8, 628 (2012).
pubmed: 23212245
pmcid: 3542530
Hung, N.-J. & Johnson, A. W. Nuclear recycling of the pre-60S ribosomal subunit-associated factor Arx1 depends on Rei1 in Saccharomyces cerevisiae. Mol. Cell. Biol. 26, 3718–3727 (2006).
pubmed: 16648468
pmcid: 1489010
Lebreton, A. A functional network involved in the recycling of nucleocytoplasmic pre-60S factors. J. Cell Biol. 173, 349–360 (2006).
pubmed: 16651379
pmcid: 2063836
Meyer, A. E., Hoover, L. A. & Craig, E. A. The cytosolic J-protein, Jjj1, and Rei1 function in the removal of the pre-60S subunit factor Arx1. J. Biol. Chem. 285, 961–968 (2010).
pubmed: 19901025
Greber, B. J. et al. Insertion of the biogenesis factor Rei1 probes the ribosomal tunnel during 60S maturation. Cell 164, 91–102 (2016).
pubmed: 26709046
Bussiere, C., Hashem, Y., Arora, S., Frank, J. & Johnson, A. W. Integrity of the P-site is probed during maturation of the 60S ribosomal subunit. J. Cell Biol. 197, 747–759 (2012). References 147 and 155 describe functional proofreading of the large ribosomal subunit precursors.
pubmed: 22689654
pmcid: 3373404
Weis, F. et al. Mechanism of eIF6 release from the nascent 60S ribosomal subunit. Nat. Struct. Mol. Biol. 22, 914–919 (2015).
pubmed: 26479198
pmcid: 4871238
Heuer, A. et al. Cryo-EM structure of a late pre-40S ribosomal subunit from Saccharomyces cerevisiae. eLife 6, e30189 (2017).
pubmed: 29155690
pmcid: 5695908
Scaiola, A. et al. Structure of a eukaryotic cytoplasmic pre-40S ribosomal subunit. EMBO J. 37, e98499 (2018). References 157 and 158 describe the structure of the late cytoplasmic pre-40S particle.
pubmed: 29459436
Moriggi, G., Nieto, B. & Dosil, M. Rrp12 and the Exportin Crm1 participate in late assembly events in the nucleolus during 40S ribosomal subunit biogenesis. PLOS Genet. 10, e1004836 (2014).
pubmed: 25474739
pmcid: 4256259
Johnson, M. C., Ghalei, H., Doxtader, K. A., Karbstein, K. & Stroupe, M. E. Structural heterogeneity in pre-40S ribosomes. Structure 25, 329–340 (2017).
pubmed: 28111018
pmcid: 5314460
McCaughan, U. M. et al. Pre-40S ribosome biogenesis factor Tsr1 is an inactive structural mimic of translational GTPases. Nat. Commun. 7, 11789 (2016).
pubmed: 27250689
pmcid: 4895721
Schütz, S. et al. A RanGTP-independent mechanism allows ribosomal protein nuclear import for ribosome assembly. eLife 3, e03473 (2014).
pubmed: 25144938
pmcid: 4161973
Ferreira-Cerca, S., Kiburu, I., Thomson, E., LaRonde, N. & Hurt, E. Dominant Rio1 kinase/ATPase catalytic mutant induces trapping of late pre-40S biogenesis factors in 80S-like ribosomes. Nucleic Acids Res. 42, 8635–8647 (2014).
pubmed: 24948609
pmcid: 4117770
Turowski, T. W. et al. Rio1 mediates ATP-dependent final maturation of 40S ribosomal subunits. Nucleic Acids Res. 42, 12189–12199 (2014).
pubmed: 25294836
pmcid: 4231747
Lebaron, S. et al. Proofreading of pre-40S ribosome maturation by a translation initiation factor and 60S subunits. Nat. Struct. Mol. Biol. 19, 744–753 (2012).
pubmed: 22751017
pmcid: 3654374
Strunk, B. S., Novak, M. N., Young, C. L. & Karbstein, K. A translation-like cycle is a quality control checkpoint for maturing 40S ribosome subunits. Cell 150, 111–121 (2012). References 165 and 166 illustrate how functional proofreading of the small ribosomal subunit is carried out in the cytoplasm.
pubmed: 22770215
pmcid: 3615461
Ghalei, H. et al. The ATPase Fap7 tests the ability to carry out translocation-like conformational changes and releases Dim1 during 40S ribosome maturation. Mol. Cell 67, 990–1000 (2017).
pubmed: 28890337
pmcid: 6192259
Henras, A. K., Plisson-Chastang, C., O’Donohue, M.-F., Chakraborty, A. & Gleizes, P.-E. An overview of pre-ribosomal RNA processing in eukaryotes. Wiley Interdiscip. Rev. RNA 6, 225–242 (2015).
pubmed: 25346433
Wild, T. et al. A protein inventory of human ribosome biogenesis reveals an essential function of exportin 5 in 60S subunit export. PLOS Biol. 8, e1000522 (2010).
pubmed: 21048991
pmcid: 2964341
Tafforeau, L. et al. The complexity of human ribosome biogenesis revealed by systematic nucleolar screening of pre-rRNA processing factors. Mol. Cell 51, 539–551 (2013).
pubmed: 23973377
Badertscher, L. et al. Genome-wide RNAi screening identifies protein modules required for 40S subunit synthesis in human cells. Cell Rep. 13, 2879–2891 (2015).
pubmed: 26711351
Nicolas, E. et al. Involvement of human ribosomal proteins in nucleolar structure and p53-dependent nucleolar stress. Nat. Commun. 7, 11390 (2016).
pubmed: 27265389
pmcid: 4897761
Farley-Barnes, K. I. et al. Diverse regulators of human ribosome biogenesis discovered by changes in nucleolar number. Cell Rep. 22, 1923–1934 (2018).
pubmed: 29444442
pmcid: 5828527
Sulima, S. O., Hofman, I. J. F., De Keersmaecker, K. & Dinman, J. D. How ribosomes translate cancer. Cancer Discov. 7, 1069–1087 (2017).
pubmed: 28923911
pmcid: 5630089
Narla, A. & Ebert, B. L. Ribosomopathies: human disorders of ribosome dysfunction. Blood 115, 3196–3205 (2010).
pubmed: 20194897
pmcid: 2858486
Farley, K. I. & Baserga, S. J. Probing the mechanisms underlying human diseases in making ribosomes. Biochem. Soc. Trans. 44, 1035–1044 (2016).
pubmed: 27528749
pmcid: 5360156
Draptchinskaia, N. et al. The gene encoding ribosomal protein S19 is mutated in Diamond-Blackfan anaemia. Nat. Genet. 21, 169–175 (1999).
pubmed: 9988267
Choesmel, V. et al. Impaired ribosome biogenesis in Diamond-Blackfan anemia. Blood 109, 1275–1283 (2007).
pubmed: 17053056
pmcid: 1785132
Bolze, A. et al. Ribosomal protein SA haploinsufficiency in humans with isolated congenital asplenia. Science 340, 976–978 (2013).
pubmed: 23579497
pmcid: 3677541
Chagnon, P. et al. A missense mutation (R565W) in cirhin (FLJ14728) in North American Indian childhood cirrhosis. Am. J. Hum. Genet. 71, 1443–1449 (2002).
pubmed: 12417987
pmcid: 378590
Ebert, B. L. et al. Identification of RPS14 as a 5q- syndrome gene by RNA interference screen. Nature 451, 335–339 (2008).
pubmed: 18202658
pmcid: 3771855
Trainor, P. A., Dixon, J. & Dixon, M. J. Treacher Collins syndrome: etiology, pathogenesis and prevention. Eur. J. Hum. Genet. 17, 275–283 (2009).
pubmed: 19107148
Warren, A. J. Molecular basis of the human ribosomopathy Shwachman–Diamond syndrome. Adv. Biol. Regul. 67, 109–127 (2018).
pubmed: 28942353
Mills, E. W. & Green, R. Ribosomopathies: there’s strength in numbers. Science 358, eaan2755 (2017).
pubmed: 29097519
Marechal, V., Elenbaas, B., Piette, J., Nicolas, J. C. & Levine, A. J. The ribosomal L5 protein is associated with mdm-2 and mdm-2–p53 complexes. Mol. Cell. Biol. 14, 7414–7420 (1994).
pubmed: 7935455
pmcid: 359276
Bursac´, S. et al. Mutual protection of ribosomal proteins L5 and L11 from degradation is essential for p53 activation upon ribosomal biogenesis stress. Proc. Natl Acad. Sci. USA 109, 20467–20472 (2012).
pubmed: 23169665
Sloan, K. E., Bohnsack, M. T. & Watkins, N. J. The 5S RNP couples p53 homeostasis to ribosome biogenesis and nucleolar stress. Cell Rep. 5, 237–247 (2013).
pubmed: 24120868
pmcid: 3808153
Jaako, P. et al. Disruption of the 5S RNP-Mdm2 interaction significantly improves the erythroid defect in a mouse model for Diamond–Blackfan anemia. Leukemia 29, 2221–2229 (2015).
pubmed: 25987256
pmcid: 4844018
Jones, N. C. et al. Prevention of the neurocristopathy Treacher Collins syndrome through inhibition of p53 function. Nat. Med. 14, 125–133 (2008).
pubmed: 18246078
pmcid: 3093709
Barlow, J. L. et al. A p53-dependent mechanism underlies macrocytic anemia in a mouse model of human 5q– syndrome. Nat. Med. 16, 59–66 (2010).
pubmed: 19966810
Wilkins, B. J., Lorent, K., Matthews, R. P. & Pack, M. p53-mediated biliary defects caused by knockdown of cirh1a, the zebrafish homolog of the gene responsible for North American Indian childhood cirrhosis. PLOS ONE 8, e77670 (2013).
pubmed: 24147052
pmcid: 3795688
O’Donohue, M.-F., Choesmel, V., Faubladier, M., Fichant, G. & Gleizes, P.-E. Functional dichotomy of ribosomal proteins during the synthesis of mammalian 40S ribosomal subunits. J. Cell Biol. 190, 853–866 (2010).
pubmed: 20819938
pmcid: 2935573
Boria, I. et al. The ribosomal basis of Diamond–Blackfan anemia: mutation and database update. Hum. Mutat. 31, 1269–1279 (2010).
pubmed: 20960466
pmcid: 4485435
Gripp, K. W. et al. Diamond-Blackfan anemia with mandibulofacial dystostosis is heterogeneous, including the novel DBA genes TSR2 and RPS28. Am. J. Med. Genet. A 164A, 2240–2249 (2014).
pubmed: 24942156
Xue, S. & Barna, M. Specialized ribosomes: a new frontier in gene regulation and organismal biology. Nat. Rev. Mol. Cell. Biol. 13, 355–369 (2012).
pubmed: 22617470
pmcid: 4039366
Sankaran, V. G. et al. Exome sequencing identifies GATA1 mutations resulting in Diamond–Blackfan anemia. J. Clin. Invest. 122, 2439–2443 (2012).
pubmed: 22706301
pmcid: 22706301
Ludwig, L. S. et al. Altered translation of GATA1 in Diamond–Blackfan anemia. Nat. Med. 20, 748–753 (2014).
pubmed: 24952648
pmcid: 4087046
Khajuria, R. K. et al. Ribosome levels selectively regulate translation and lineage commitment in human hematopoiesis. Cell 173, 90–103 (2018). This paper shows that limiting ribosome levels causes defects in lineage commitment in patients with DBA.
pubmed: 29551269
Wu, S., Tan, D., Woolford, J. L., Dong, M.-Q. & Gao, N. Atomic modeling of the ITS2 ribosome assembly subcomplex from cryo-EM together with mass spectrometry-identified protein-protein crosslinks. Protein Sci. 26, 103–112 (2017).
pubmed: 27643814
Loibl, M. et al. The drug diazaborine blocks ribosome biogenesis by inhibiting the AAA-ATPase Drg1. J. Biol. Chem. 289, 3913–3922 (2014).
pubmed: 24371142
Zisser, G. et al. Viewing pre-60S maturation at a minute’s timescale. Nucleic Acids Res. 46, 3140–3151 (2018).
pubmed: 29294095
Kawashima, S. A. et al. Potent, reversible, and specific chemical inhibitors of eukaryotic ribosome biogenesis. Cell 167, 512–524 (2016). References 200–202 show the use of small-molecule inhibitors to block specific stages of eukaryotic ribosome assembly.
pubmed: 27667686
pmcid: 5116814
Talkish, J. et al. Disruption of ribosome assembly in yeast blocks cotranscriptional pre-rRNA processing and affects the global hierarchy of ribosome biogenesis. RNA 22, 852–866 (2016).
pubmed: 27036125
pmcid: 4878612
Albert, B. et al. A molecular titration system coordinates ribosomal protein gene transcription with ribosomal RNA synthesis. Mol. Cell 64, 720–733 (2016).
pubmed: 27818142
Prouteau, M. et al. TORC1 organized in inhibited domains (TOROIDs) regulate TORC1 activity. Nature 550, 265–269 (2017).
pubmed: 28976958
pmcid: 5640987
Shen, K. et al. Architecture of the human GATOR1 and GATOR1-Rag GTPases complexes. Nature 556, 64–69 (2018).
pubmed: 29590090
pmcid: 5975964
Mangan, H., Gailín, M. Ó. & McStay, B. Integrating the genomic architecture of human nucleolar organizer regions with the biophysical properties of nucleoli. FEBS J. 284, 3977–3985 (2017).
pubmed: 28500793