Stabilisation of lipid membrane-incorporated porphyrin derivative aqueous solutions and their photodynamic activities.
Journal
Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology
ISSN: 1474-9092
Titre abrégé: Photochem Photobiol Sci
Pays: England
ID NLM: 101124451
Informations de publication
Date de publication:
13 Feb 2019
13 Feb 2019
Historique:
pubmed:
27
11
2018
medline:
15
3
2019
entrez:
27
11
2018
Statut:
ppublish
Résumé
Lipid membrane-incorporated porphyrin derivatives (LMIPors) having three phenyl moieties and one pyridyl or pyridinium moiety at the meso-positions were more stable than LMIPors having phenyl and/or pyridyl moieties. The former two LMIPors showed high photodynamic activity toward cancer cells under photoirradiation at wavelengths over 600 nm, which are the most suitable for photodynamic therapy. The photodynamic activities were greater than that of Photofrin, which is currently the main drug employed clinically as a photosensitiser. The results represent significant progress toward the optimisation of LMIPors as photosensitisers.
Identifiants
pubmed: 30474674
doi: 10.1039/c8pp00350e
pii: 10.1039/c8pp00350e
doi:
Substances chimiques
Porphyrins
0
Solutions
0
Water
059QF0KO0R
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
459-466Références
G. Sessa and G. Weissmann, Phospholipid spherules (liposomes) as a model for biological membranes, J. Lipid Res., 1968, 9, 310–318.
doi: 10.1016/S0022-2275(20)43097-4
Y. Kaneda, Virosomes: evolution of the liposome as a targeted drug delivery system, Adv. Drug Delivery Rev., 2000, 43, 197–205.
T. M. Allen and P. R. Cullis, Drug delivery systems: Entering the mainstream, Science, 2004, 303, 1818–1822.
doi: 10.1126/science.1095833
V. P. Torchilin, Recent advances with liposomes as pharmaceutical carriers, Nat. Rev. Drug Discovery, 2005, 4, 145–160.
X. Gao and L. Huang, Cationic liposome-mediated gene transfer, Gene Ther., 1995, 2, 710–722.
pubmed: 8750010
M. Ethirajan, Y. Chen, P. Joshi and R. K. Pandey, The role of porphyrin chemistry in tumor imaging and photo-dynamic therapy, Chem. Soc. Rev., 2011, 40, 340–362.
doi: 10.1039/B915149B
L. B. Josefsen and R. W. Boyle, Unique diagnostic and therapeutic roles of porphyrins and phthalocyanines in photodynamic therapy, imaging and theranostics, Theranostics, 2012, 2, 916–966.
doi: 10.7150/thno.4571
C. S. Jin, J. F. Lovell, J. Chen and G. Zheng, Ablation of hypoxic tumors with dose-equivalent photothermal, but not photodynamic, therapy using a nanostructured porphyrin assembly, ACS Nano, 2013, 7, 2541–2550.
doi: 10.1021/nn3058642
Q. Zou, M. Abbas, L. Zhao, S. Li, G. Shen and X. Yan, Biological photothermal nanodots based on self-assembly of peptide porphyrin conjugates for antitumor therapy, J. Am. Chem. Soc., 2017, 139, 1921–1927.
doi: 10.1021/jacs.6b11382
H. I. Pass, Photodynamic therapy in oncology-mechanisms and clinical use, J. Natl. Cancer Inst., 1993, 85, 443–456.
T. J. Dougherty, C. Gomer, B. W. Henderson, G. Jori, D. Kessel, M. Korbelik, J. Moan and Q. Peng, Photodynamic therapy, J. Natl. Cancer Inst., 1998, 90, 889–905.
doi: 10.1093/jnci/90.12.889
K. Lang, J. Mosinger and D. M. Wagnerová, Photophysical properties of porphyrinoid sensitizers non-covalently bound to host molecules; models for photodynamic therapy, Coord. Chem. Rev., 2004, 248, 321–350.
doi: 10.1016/j.ccr.2004.02.004
F. Postigo, M. Mora, M. A. De Madariaga, S. Nonell and M. L. Sagrista, Incorporation of hydrophobic porphyrins into liposomes: characterization and structural requirements, Int. J. Pharm., 2004, 278, 239–254.
doi: 10.1016/j.ijpharm.2004.03.004
S. Ben-Dror, I. Bronshtein, A. Wiehe, B. Röder, M. O. Senge and B. Ehrenberg, On the correlation between hydrophobicity, liposome binding and cellular uptake of porphyrin sensitizers, Photochem. Photobiol., 2006, 82, 695–701.
H. Umakoshi, K. Morimoto, Y. Ohama, H. Nagami, T. Shimanouchi and R. Kuboi, Liposome modified with Mn-porphyrin complex can simultaneously induce antioxidative enzyme-like activity of both superoxide dismutase and peroxidase, Langmuir, 2008, 24, 4451–4455.
doi: 10.1021/la800174n
A. Ikeda, Photodynamic activity of fullerenes and other molecules incorporated into lipid membranes by exchange, Chem. Rec., 2016, 16, 249–260.
A. Ikeda, K. Ashizawa, Y. Tsuchiya, M. Ueda and K. Sugikawa, Formation of lipid membrane-incorporated small π-molecules bearing hydrophilic groups, RSC Adv., 2016, 6, 78505–78513.
doi: 10.1039/C6RA18635A
A. Ikeda, T. Sato, K. Kitamura, K. Nishiguchi, Y. Sasaki, J. Kikuchi, T. Ogawa, K. Yogo and T. Takeya, Effcient photo-cleavage of DNA utilising water-soluble lipid membrane-incorporated [60]fullerenes prepared using a [60]fullerene exchange method, Org. Biomol. Chem., 2005, 3, 2907–2909.
doi: 10.1039/b507954c
A. Ikeda, Y. Doi, K. Nishiguchi, K. Kitamura, M. Hashizume, J. Kikuchi, K. Yogo, T. Ogawa and T. Takeya, Induction of cell death by photodynamic therapy with water-soluble lipid-membrane-incorporated [60]fullerene, Org. Biomol. Chem., 2007, 5, 1158–1160.
doi: 10.1039/b701767g
Y. Doi, A. Ikeda, M. Akiyama, M. Nagano, T. Shigematsu, T. Ogawa, T. Takeya and T. Nagasaki, Intracellular uptake and photodynamic activity of water-soluble [60]- and [70] fullerenes incorporated in liposomes, Chem. – Eur.J., 2008, 14, 8892–8897.
doi: 10.1002/chem.200801090
A. Ikeda, T. Sue, M. Akiyama, K. Fujioka, T. Shigematsu, Y. Doi, J. Kikuchi, T. Konishi and R. Nakajima, Preparation of highly photosensitizing liposomes with fullerene-doped lipid bilayer using dispersion-controllable molecular exchange reactions, Org. Lett., 2008, 10, 4077–4080.
doi: 10.1021/ol8015918
A. Ikeda, Y. Kawai, J. Kikuchi and M. Akiyama, Effect of phase transition temperature of liposomes on preparation of fullerene-encapsulated liposomes by the fullerene-exchange reaction, Chem. Commun., 2010, 46, 2847–2849.
doi: 10.1039/b926949e
A. Ikeda, M. Akiyama, T. Ogawa and T. Takeya, Photodynamic activity of liposomal photosensitizers via energy transfer from antenna molecules to [60]fullerene, ACS Med. Chem. Lett., 2010, 1, 115–119.
doi: 10.1021/ml100021x
A. Ikeda, K. Kiguchi, T. Shigematsu, K. Nobusawa, J. Kikuchi and M. Akiyama, Location of [60]fullerene incorporation in lipid membranes, Chem. Commun., 2011, 47, 12095–12097.
doi: 10.1039/c1cc14650e
A. Ikeda, M. Mori, K. Kiguchi, K. Yasuhara, J. Kikuchi, K. Nobusawa, M. Akiyama, M. Hashizume, T. Ogawa and T. Takeya, Advantages and potential of lipid-membrane-incorporating fullerenes prepared by the fullerene-exchange method, Chem. – Asian J., 2012, 7, 605–613.
doi: 10.1002/asia.201100792
A. Ikeda, T. Hida, T. Iizuka, M. Tsukamoto, J. Kikuchi and K. Yasuhara, Dynamic behaviour of giant unilamellar vesicles induced by the uptake of [70]fullerene, Chem. Commun., 2014, 50, 1288–1291.
doi: 10.1039/C3CC47711H
A. Ikeda, K. Kiguchi, T. Hida, K. Yasuhara, K. Nobusawa, M. Akiyama and W. Shinoda, [70]Fullerenes assist the formation of phospholipid bicelles at low lipid concentrations, Langmuir, 2014, 30, 12315–12320.
doi: 10.1021/la503732q
A. Ikeda, S. Hino, K. Ashizawa, K. Sugikawa, J. Kikuchi, M. Tsukamoto and K. Yasuhara, Lipid-membrane-incorporated hydrophobic photochromic molecules prepared by the exchange method using cyclodextrins, Org. Biomol. Chem., 2015, 13, 6175–6182.
doi: 10.1039/C5OB00240K
A. Ikeda, S. Hino, T. Mae, Y. Tsuchiya, K. Sugikawa, M. Tsukamoto, K. Yasuhara, H. Shigeto, H. Funabashi, A. Kuroda and M. Akiyama, Porphyrin-uptake in liposomes and living cells using an exchange method with cyclodextrin, RSC Adv., 2015, 5, 105279–105287.
A. Ikeda, T. Mae, M. Ueda, K. Sugikawa, H. Shigeto, H. Funabashi, A. Kuroda and M. Akiyama, Improved photodynamic activities of liposome-incorporated [60]fullerene derivatives bearing a polar group, Chem. Commun., 2017, 53, 2966–2969.
doi: 10.1039/C7CC00302A
E. D. Sternberg, D. Dolphin and C. Brückner, Porphyrin-based photosensitizers for use in photodynamic therapy, Tetrahedron, 1998, 54, 4151–4202.
doi: 10.1016/S0040-4020(98)00015-5
A. M. Slomp, S. M. W. Barreira, L. Z. B. Carrenho, C. C. Vandresen, I. F. Zattoni, S. M. S. Ló, J. C. C. Dallagnol, D. R. B. Ducatti, A. Orsato, M. E. R. Duarte, M. D. Noseda, M. F. Otuki and A. G. Gonçalves, Photodynamic effect of, meso-(aryl)porphyrins and meso-(1-methyl-4-pyridinium) porphyrins on HaCaT keratinocytes, Bioorg. Med. Chem. Lett., 2017, 27, 156–161.
doi: 10.1016/j.bmcl.2016.11.094
R. Kubota, S. Imamura, T. Shimizu, S. Asayama and H. Kawakami, Synthesis of water-soluble dinuclear Mn-porphyrin with multiple antioxidative activities, ACS Med. Chem. Lett., 2014, 5, 639–643.
doi: 10.1021/ml400493f
Y. Murakami, A. Nakano, A. Yoshimatsu, K. Uchitomi and Y. Matsuda, Characterization of molecular aggregates of peptide amphiphiles and kinetics of dynamic processes performed by single-walled vesicles, J. Am. Chem. Soc., 1984, 106, 3613–3623.
doi: 10.1021/ja00324a034
Y. Tsuchiya, T. Shiraki, T. Matsumoto, K. Sugikawa, K. Sada, A. Yamano and S. Shinkai, Supramolecular dye inclusion single crystals created from 2,3,6-trimethyl-ß-cyclodextrin and porphyrins, Chem. – Eur. J., 2012, 18, 456–465.
doi: 10.1002/chem.201102075
K. Kano, R. Nishiyabu, T. Asada and Y. Kuroda, Static and dynamic behavior of 2:1 inclusion complexes of cyclodextrins and charged porphyrins in aqueous organic media, J. Am. Chem. Soc., 2002, 124, 9937–9944.
doi: 10.1021/ja020253n
A. Ikeda, S. Satake, T. Mae, M. Ueda, K. Sugikawa, H. Shigeto, H. Funabashi and A. Kuroda, Photodynamic activities of porphyrin derivative-cyclodextrin complexes by photoirradiation, ACS Med. Chem. Lett., 2017, 8, 555–559.
doi: 10.1021/acsmedchemlett.7b00098
B. Horiguchi, T. Nakaya, M. Ueda, K. Sugikawa, T. Mizuta, T. Haino, N. Kawata and A. Ikeda, Controllable direction of porphyrin derivatives in two cyclodextrin cavities, Eur. J. Org. Chem., 2018, 2138–2143.
I. Nakanishi, S. Fukuzumi, T. Konishi, K. Ohkubo, M. Fujitsuka, O. Ito and N. Miyata, DNA cleavage via super-oxide anion formed in photoinduced electron transfer from NADH to γ-cyclodextrin-bicapped C
doi: 10.1021/jp013215j
R. F. Pasternack, L. Francesconi, D. Raff and E. Spiro, Aggregation of nickel(II), copper(II), and zinc(II) derivatives of water-soluble porphyrins, Inorg. Chem., 1973, 12, 2606–2611.
We have reported the stability of LMI3, 4 and 7 consisting of eggPC: T. Nakaya, Y. Tsuchiya, B. Horiguchi, K. Sugikawa and A. Ikeda
B. A. Lindig, M. A. J. Rodgers and A. P. Schaap, Determination of the lifetime of singlet oxygen in water-d
doi: 10.1021/ja00537a030
F. M. Engelmann, I. Mayer, D. S. Gabrielli, H. E. Toma, A. J. Kowaltowski, K. Araki and M. S. Baptista, Interaction of cationic, meso-porphyrins with liposomes, mitochondria and erythrocytes, J. Bioenerg. Biomembr., 2007, 39, 175–185.
doi: 10.1007/s10863-007-9075-0
J. W. McLean, E. A. Fox, P. Baluk, P. B. Bolton, A. Haskell, R. Pearlman, G. Thurston, E. Y. Umemoto and D. M. McDonald, Organ-specific endothelial cell uptake of cationic liposome-DNA complexes in mice, Am. J. Physiol., 1997, 273, 387–404.