C and N metabolism in barley leaves and peduncles modulates responsiveness to changing CO2.


Journal

Journal of experimental botany
ISSN: 1460-2431
Titre abrégé: J Exp Bot
Pays: England
ID NLM: 9882906

Informations de publication

Date de publication:
07 01 2019
Historique:
received: 01 07 2018
accepted: 05 11 2018
pubmed: 27 11 2018
medline: 12 2 2020
entrez: 27 11 2018
Statut: ppublish

Résumé

Balancing of leaf carbohydrates is a key process for maximising crop performance in elevated CO2 environments. With the aim of testing the role of the carbon sink-source relationship under different CO2 conditions, we performed two experiments with two barley genotypes (Harrington and RCSL-89) exposed to changing CO2. In Experiment 1, the genotypes were exposed to 400 and 700 ppm CO2. Elevated CO2 induced photosynthetic acclimation in Harrington that was linked with the depletion of Rubisco protein. In contrast, a higher peduncle carbohydrate-storage capacity in RSCL-89 was associated with a better balance of leaf carbohydrates that could help to maximize the photosynthetic capacity under elevated CO2. In Experiment 2, plants that were grown at 400 ppm or 700 ppm CO2 for 5 weeks were switched to 700 ppm or 400 ppm CO2, respectively. Raising CO2 to 700 ppm increased photosynthetic rates with a reduction in leaf carbohydrate content and an improvement in N assimilation. The increase in nitrate content was associated with up-regulation of genes of protein transcripts of photosynthesis and N assimilation that favoured plant performance under elevated CO2. Finally, decreasing the CO2 from 700 ppm to 400 ppm revealed that both stomatal closure and inhibited expression of light-harvesting proteins negatively affected photosynthetic performance and plant growth.

Identifiants

pubmed: 30476207
pii: 5164354
doi: 10.1093/jxb/ery380
pmc: PMC6322569
doi:

Substances chimiques

Carbon Dioxide 142M471B3J
Carbon 7440-44-0
Nitrogen N762921K75

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

599-611

Références

Plant Cell Physiol. 2010 May;51(5):795-809
pubmed: 20304786
Proc Natl Acad Sci U S A. 2002 Feb 5;99(3):1730-5
pubmed: 11818528
Plant Cell Environ. 2015 Dec;38(12):2780-94
pubmed: 26081746
PLoS One. 2014 Jun 06;9(6):e98738
pubmed: 24905454
Science. 1939 Jun 2;89(2318):512-4
pubmed: 17776587
Plant Sci. 2017 Jul;260:119-128
pubmed: 28554469
J Exp Bot. 2016 Jan;67(1):31-45
pubmed: 26466662
Genome. 2003 Dec;46(6):1010-23
pubmed: 14663520
J Integr Plant Biol. 2016 Nov;58(11):914-926
pubmed: 26990448
J Exp Bot. 2007;58(3):579-91
pubmed: 17158509
Plant Cell Physiol. 2015 Aug;56(8):1556-73
pubmed: 26063390
Plant Physiol. 1998 Dec;118(4):1525-32
pubmed: 9847129
J Exp Bot. 2011 Jul;62(11):3957-69
pubmed: 21511906
Plant Cell. 2004 Dec;16(12):3304-25
pubmed: 15548738
Plant Sci. 2015 Dec;241:32-44
pubmed: 26706056
Proc Natl Acad Sci U S A. 2004 Aug 3;101(31):11506-10
pubmed: 15272076
BMC Genet. 2015 Mar 20;16:29
pubmed: 25887313
Plant J. 2011 Dec;68(5):857-70
pubmed: 21838777
Nature. 1970 Aug 15;227(5259):680-5
pubmed: 5432063
N Biotechnol. 2018 Jan 25;40(Pt B):192-199
pubmed: 28827159
Front Plant Sci. 2016 May 13;7:657
pubmed: 27242858
Plant J. 2010 Mar;61(6):1067-91
pubmed: 20409279
Plant Cell Environ. 2007 Sep;30(9):1035-40
pubmed: 17661745
J Exp Bot. 2013 Apr;64(7):1879-92
pubmed: 23564953
New Phytol. 2005 Feb;165(2):351-71
pubmed: 15720649
Science. 2010 May 14;328(5980):899-903
pubmed: 20466933
Plant J. 2007 Feb;49(3):463-91
pubmed: 17217462
New Phytol. 2004 Mar;161(3):749-759
pubmed: 33873721
Plant Physiol. 1999 Nov;121(3):871-878
pubmed: 10557235
Nat Protoc. 2008;3(6):1101-8
pubmed: 18546601
Front Plant Sci. 2015 Mar 23;6:180
pubmed: 25852727
New Phytol. 2015 May;206(3):913-931
pubmed: 25605349
Front Plant Sci. 2013 Jul 09;4:247
pubmed: 23882273
Plant Cell Environ. 2007 Mar;30(3):258-270
pubmed: 17263773
Plant Physiol. 1983 Jun;72(2):297-302
pubmed: 16662996
Plant Sci. 2016 Mar;244:19-30
pubmed: 26810450
J Exp Bot. 2000 Jan;51(342):9-17
pubmed: 10938791
Plant Cell Physiol. 2016 Oct;57(10):2133-2146
pubmed: 27440546

Auteurs

Fernando Torralbo (F)

Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Bilbao, Spain.
Instituto de Agrobiotecnología (IdAB)-CSIC, Avenida de Pamplona, Mutilva Baja, Spain.

Rubén Vicente (R)

Abiotic Stress Department, Institute of Natural Resources and Agrobiology of Salamanca, IRNASA-CSIC, Salamanca, Spain.
Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg, Potsdam, Germany.

Rosa Morcuende (R)

Abiotic Stress Department, Institute of Natural Resources and Agrobiology of Salamanca, IRNASA-CSIC, Salamanca, Spain.

Carmen González-Murua (C)

Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Bilbao, Spain.

Iker Aranjuelo (I)

Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Bilbao, Spain.
Instituto de Agrobiotecnología (IdAB)-CSIC, Avenida de Pamplona, Mutilva Baja, Spain.

Articles similaires

Photosynthesis Ribulose-Bisphosphate Carboxylase Carbon Dioxide Molecular Dynamics Simulation Cyanobacteria
Genome, Viral Ralstonia Composting Solanum lycopersicum Bacteriophages
Semiconductors Photosynthesis Polymers Carbon Dioxide Bacteria
Fragaria Light Plant Leaves Osmosis Stress, Physiological

Classifications MeSH