Aurora kinase A drives the evolution of resistance to third-generation EGFR inhibitors in lung cancer.
Animals
Apoptosis
/ drug effects
Aurora Kinase A
/ metabolism
Cell Count
Cell Cycle Proteins
/ metabolism
Cell Line, Tumor
Drug Resistance, Neoplasm
ErbB Receptors
/ antagonists & inhibitors
Humans
Lung Neoplasms
/ drug therapy
Mice
Microtubule-Associated Proteins
/ metabolism
Mutation
/ genetics
Neoplasm, Residual
/ drug therapy
Nuclear Proteins
/ metabolism
Phosphorylation
/ drug effects
Protein Kinase Inhibitors
/ pharmacology
Journal
Nature medicine
ISSN: 1546-170X
Titre abrégé: Nat Med
Pays: United States
ID NLM: 9502015
Informations de publication
Date de publication:
01 2019
01 2019
Historique:
received:
13
09
2017
accepted:
04
10
2018
pubmed:
28
11
2018
medline:
11
5
2019
entrez:
28
11
2018
Statut:
ppublish
Résumé
Although targeted therapies often elicit profound initial patient responses, these effects are transient due to residual disease leading to acquired resistance. How tumors transition between drug responsiveness, tolerance and resistance, especially in the absence of preexisting subclones, remains unclear. In epidermal growth factor receptor (EGFR)-mutant lung adenocarcinoma cells, we demonstrate that residual disease and acquired resistance in response to EGFR inhibitors requires Aurora kinase A (AURKA) activity. Nongenetic resistance through the activation of AURKA by its coactivator TPX2 emerges in response to chronic EGFR inhibition where it mitigates drug-induced apoptosis. Aurora kinase inhibitors suppress this adaptive survival program, increasing the magnitude and duration of EGFR inhibitor response in preclinical models. Treatment-induced activation of AURKA is associated with resistance to EGFR inhibitors in vitro, in vivo and in most individuals with EGFR-mutant lung adenocarcinoma. These findings delineate a molecular path whereby drug resistance emerges from drug-tolerant cells and unveils a synthetic lethal strategy for enhancing responses to EGFR inhibitors by suppressing AURKA-driven residual disease and acquired resistance.
Identifiants
pubmed: 30478424
doi: 10.1038/s41591-018-0264-7
pii: 10.1038/s41591-018-0264-7
pmc: PMC6324945
mid: NIHMS1508964
doi:
Substances chimiques
Cell Cycle Proteins
0
Microtubule-Associated Proteins
0
Nuclear Proteins
0
Protein Kinase Inhibitors
0
TPX2 protein, human
0
EGFR protein, human
EC 2.7.10.1
ErbB Receptors
EC 2.7.10.1
Aurora Kinase A
EC 2.7.11.1
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Langues
eng
Sous-ensembles de citation
IM
Pagination
111-118Subventions
Organisme : NCI NIH HHS
ID : U54 CA224081
Pays : United States
Organisme : NCI NIH HHS
ID : R01 CA169338
Pays : United States
Organisme : NIGMS NIH HHS
ID : R01 GM107671
Pays : United States
Organisme : NCI NIH HHS
ID : U01 CA168370
Pays : United States
Organisme : NCI NIH HHS
ID : U01 CA217882
Pays : United States
Organisme : Doris Duke Charitable Foundation
ID : 2018110
Pays : United States
Commentaires et corrections
Type : CommentIn
Références
Jänne, P. A. et al. AZD9291 in EGFR inhibitor-resistant non-small-cell lung cancer. N. Engl. J. Med. 372, 1689–1699 (2015).
doi: 10.1056/NEJMoa1411817
Sequist, L. V. et al. Rociletinib in EGFR-mutated non-small-cell lung cancer. N. Engl. J. Med. 372, 1700–1709 (2015).
doi: 10.1056/NEJMoa1413654
Rosell, R. et al. Erlotinib versus standard chemotherapy as first-line treatment for European patients with advanced EGFR mutation-positive non-small-cell lung cancer (EURTAC): a multicentre, open-label, randomised phase 3 trial. Lancet Oncol. 13, 239–246 (2012).
doi: 10.1016/S1470-2045(11)70393-X
Sequist, L. V. et al. Genotypic and histological evolution of lung cancers acquiring resistance to EGFR inhibitors. Sci. Transl. Med. 3, 75ra26 (2011).
doi: 10.1126/scitranslmed.3002003
Blakely, C. M. et al. Evolution and clinical impact of co-occurring genetic alterations in advanced-stage EGFR-mutant lung cancers. Nat. Genet. 49, 1693–1704 (2017).
doi: 10.1038/ng.3990
Burrell, R. A. & Swanton, C. Tumour heterogeneity and the evolution of polyclonal drug resistance. Mol. Oncol. 8, 1095–1111 (2014).
doi: 10.1016/j.molonc.2014.06.005
Chabon, J. J. et al. Circulating tumour DNA profiling reveals heterogeneity of EGFR inhibitor resistance mechanisms in lung cancer patients. Nat. Commun. 7, 11815 (2016).
doi: 10.1038/ncomms11815
Yang, Z. et al. Investigating novel resistance mechanisms to third-generation EGFR tyrosine kinase inhibitor osimertinib in non-small cell lung cancer patients. Clin. Cancer Res. 24, 3097–3107 (2018).
doi: 10.1158/1078-0432.CCR-17-2310
Bivona, T. G. & Doebele, R. C. A framework for understanding and targeting residual disease in oncogene-driven solid cancers. Nat. Med. 22, 472–478 (2016).
doi: 10.1038/nm.4091
Hata, A. N. et al. Tumor cells can follow distinct evolutionary paths to become resistant to epidermal growth factor receptor inhibition. Nat. Med. 22, 262–269 (2016).
doi: 10.1038/nm.4040
Ramirez, M. et al. Diverse drug-resistance mechanisms can emerge from drug-tolerant cancer persister cells. Nat. Commun. 7, 10690 (2016).
doi: 10.1038/ncomms10690
Sharma, S. V. et al. A chromatin-mediated reversible drug-tolerant state in cancer cell subpopulations. Cell 141, 69–80 (2010).
doi: 10.1016/j.cell.2010.02.027
Kim, T. M. et al. Mechanisms of acquired resistance to AZD9291: a mutation-selective, irreversible EGFR inhibitor. J. Thorac. Oncol. 10, 1736–1744 (2015).
doi: 10.1097/JTO.0000000000000688
Li, L. et al. Transformation to small-cell carcinoma as an acquired resistance mechanism to AZD9291: a case report. Oncotarget 8, 18609–18614 (2017).
pubmed: 28061471
pmcid: 5392352
Piotrowska, Z. et al. Heterogeneity underlies the emergence of EGFR T790 wild-type clones following treatment of T790M-positive cancers with a third-generation EGFR inhibitor. Cancer Discov. 5, 713–722 (2015).
doi: 10.1158/2159-8290.CD-15-0399
Thress, K. S. et al. Acquired EGFR C797S mutation mediates resistance to AZD9291 in non-small cell lung cancer harboring EGFR T790M. Nat. Med. 21, 560–562 (2015).
doi: 10.1038/nm.3854
Niederst, M. J. & Engelman, J. A. Bypass mechanisms of resistance to receptor tyrosine kinase inhibition in lung cancer. Sci. Signal. 6, re6 (2013).
doi: 10.1126/scisignal.2004652
Bivona, T. G. et al. FAS and NF-κB signalling modulate dependence of lung cancers on mutant EGFR. Nature 471, 523–526 (2011).
doi: 10.1038/nature09870
Blakely, C. M. et al. NF-κB-activating complex engaged in response to EGFR oncogene inhibition drives tumor cell survival and residual disease in lung cancer. Cell Rep. 11, 98–110 (2015).
doi: 10.1016/j.celrep.2015.03.012
Shien, K. et al. Acquired resistance to EGFR inhibitors is associated with a manifestation of stem cell-like properties in cancer cells. Cancer Res. 73, 3051–3061 (2013).
doi: 10.1158/0008-5472.CAN-12-4136
Chen, J. et al. AURKA upregulation plays a role in fibroblast-reduced gefitinib sensitivity in the NSCLC cell line HCC827. Oncol. Rep. 33, 1860–1866 (2015).
doi: 10.3892/or.2015.3764
Eberlein, C. A. et al. Acquired resistance to the mutant-selective EGFR inhibitor AZD9291 is associated with increased dependence on RAS signaling in preclinical models. Cancer Res. 75, 2489–2500 (2015).
doi: 10.1158/0008-5472.CAN-14-3167
Karaman, M. W. et al. A quantitative analysis of kinase inhibitor selectivity. Nat. Biotechnol. 26, 127–132 (2008).
doi: 10.1038/nbt1358
Fu, J., Bian, M., Jiang, Q. & Zhang, C. Roles of Aurora kinases in mitosis and tumorigenesis. Mol. Cancer Res. 5, 1–10 (2007).
doi: 10.1158/1541-7786.MCR-06-0208
Sharifnia, T. et al. Genetic modifiers of EGFR dependence in non-small cell lung cancer. Proc. Natl. Acad. Sci. USA 111, 18661–18666 (2014).
doi: 10.1073/pnas.1412228112
Nikonova, A. S., Astsaturov I.Serebriiskii, I. G., Dunbrack, R. L.Jr. & Golemis, E. A. Aurora A kinase (AURKA) in normal and pathological cell division. Cell. Mol. Life Sci. 70, 661–687 (2013).
doi: 10.1007/s00018-012-1073-7
Stewart, S. & Fang, G. Anaphase-promoting complex/cyclosome controls the stability of TPX2 during mitotic exit. Mol. Cell. Biol. 25, 10516–10527 (2005).
doi: 10.1128/MCB.25.23.10516-10527.2005
Zhou, Y., Ching, Y. P., Chun, A. C. & Jin, D. Y. Nuclear localization of the cell cycle regulator CDH1 and its regulation by phosphorylation. J. Biol. Chem. 278, 12530–12536 (2003).
doi: 10.1074/jbc.M212853200
Ercan, D. et al. Reactivation of ERK signaling causes resistance to EGFR kinase inhibitors. Cancer Discov. 2, 934–947 (2012).
doi: 10.1158/2159-8290.CD-12-0103
Costa, D. B. et al. BIM mediates EGFR tyrosine kinase inhibitor-induced apoptosis in lung cancers with oncogenic EGFR mutations. PLoS Med. 4, 1669–1679 (2007).
doi: 10.1371/journal.pmed.0040315
Cragg, M. S., Kuroda, J., Puthalakath, H., Huang, D. C. & Strasser, A. Gefitinib-induced killing of NSCLC cell lines expressing mutant EGFR requires BIM and can be enhanced by BH3 mimetics. PLoS Med. 4, 1681–1689 (2007).
doi: 10.1371/journal.pmed.0040316
Hübner, A., Barrett, T., Flavell, R. A. & Davis, R. J. Multisite phosphorylation regulates Bim stability and apoptotic activity. Mol. Cell 30, 415–425 (2008).
doi: 10.1016/j.molcel.2008.03.025
Moustafa-Kamal, M., Gamache, I., Lu, Y., Li, S. & Teodoro, J. G. BimEL is phosphorylated at mitosis by Aurora A and targeted for degradation by βTrCP1. Cell Death Differ. 20, 1393–1403 (2013).
doi: 10.1038/cdd.2013.93
Anand, S., Penrhyn-Lowe, S. & Venkitaraman, A. R. AURORA-A amplification overrides the mitotic spindle assembly checkpoint, inducing resistance to Taxol. Cancer Cell. 3, 51–62 (2003).
doi: 10.1016/S1535-6108(02)00235-0
Gruss, O. J. et al. Chromosome-induced microtubule assembly mediated by TPX2 is required for spindle formation in HeLa cells. Nat. Cell Biol. 4, 871–879 (2002).
doi: 10.1038/ncb870
Lee, A. J. et al. Chromosomal instability confers intrinsic multidrug resistance. Cancer Res. 71, 1858–1870 (2011).
doi: 10.1158/0008-5472.CAN-10-3604
D’Assoro, A. B. et al. The mitotic kinase Aurora-A promotes distant metastases by inducing epithelial-to-mesenchymal transition in ERα
doi: 10.1038/onc.2012.628
Lee, C. K. et al. Clinical and molecular characteristics associated with survival among patients treated with checkpoint inhibitors for advanced non-small cell lung carcinoma: a systematic review and meta-analysis. JAMA Oncol. 4, 210–216 (2018).
doi: 10.1001/jamaoncol.2017.4427
Bavetsias, V. & Linardopoulos, S. Aurora kinase inhibitors: currents status and outlook. Front. Oncol. 5, 278 (2015).
doi: 10.3389/fonc.2015.00278
Melichar, B. et al. Safety and activity of alisertib, an investigational aurora kinase A inhibitor, in patients with breast cancer, small-cell lung cancer, non-small-cell lung cancer, head and neck squamous-cell carcinoma, and gastro-oesophageal adenocarcinoma: a five-arm phase 2 study. Lancet Oncol. 16, 395–405 (2015).
doi: 10.1016/S1470-2045(15)70051-3
Chou, T. C. Drug combination studies and their synergy quantification using the Chou–Talalay method. Cancer Res. 70, 440–446 (2010).
doi: 10.1158/0008-5472.CAN-09-1947
Varghese, F., Bukhari, A. B., Malhotra, R. & De, A. IHC Profiler: an open source plugin for the quantitative evaluation and automated scoring of immunohistochemistry images of human tissue samples. PLoS ONE 9, e96801 (2014).
doi: 10.1371/journal.pone.0096801