Transient Topographical Dynamics of the Electroencephalogram Predict Brain Connectivity and Behavioural Responsiveness During Drowsiness.
Acoustic Stimulation
Adult
Alpha Rhythm
/ physiology
Behavior
/ physiology
Brain Mapping
/ methods
Data Interpretation, Statistical
Electroencephalography
Female
Humans
Machine Learning
Male
Neural Pathways
/ physiology
Psychomotor Performance
Reaction Time
/ physiology
Sleepiness
Theta Rhythm
/ physiology
Young Adult
Brain connectivity
Drowsiness
EEG microstates
Responsiveness
Journal
Brain topography
ISSN: 1573-6792
Titre abrégé: Brain Topogr
Pays: United States
ID NLM: 8903034
Informations de publication
Date de publication:
03 2019
03 2019
Historique:
received:
25
12
2017
accepted:
22
11
2018
pubmed:
1
12
2018
medline:
11
5
2019
entrez:
1
12
2018
Statut:
ppublish
Résumé
As we fall sleep, our brain traverses a series of gradual changes at physiological, behavioural and cognitive levels, which are not yet fully understood. The loss of responsiveness is a critical event in the transition from wakefulness to sleep. Here we seek to understand the electrophysiological signatures that reflect the loss of capacity to respond to external stimuli during drowsiness using two complementary methods: spectral connectivity and EEG microstates. Furthermore, we integrate these two methods for the first time by investigating the connectivity patterns captured during individual microstate lifetimes. While participants performed an auditory semantic classification task, we allowed them to become drowsy and unresponsive. As they stopped responding to the stimuli, we report the breakdown of alpha networks and the emergence of theta connectivity. Further, we show that the temporal dynamics of all canonical EEG microstates slow down during unresponsiveness. We identify a specific microstate (D) whose occurrence and duration are prominently increased during this period. Employing machine learning, we show that the temporal properties of microstate D, particularly its prolonged duration, predicts the response likelihood to individual stimuli. Finally, we find a novel relationship between microstates and brain networks as we show that microstate D uniquely indexes significantly stronger theta connectivity during unresponsiveness. Our findings demonstrate that the transition to unconsciousness is not linear, but rather consists of an interplay between transient brain networks reflecting different degrees of sleep depth.
Identifiants
pubmed: 30498872
doi: 10.1007/s10548-018-0689-9
pii: 10.1007/s10548-018-0689-9
pmc: PMC6373294
doi:
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
315-331Subventions
Organisme : Wellcome Trust
ID : WT093811MA
Pays : United Kingdom
Références
Brain Topogr. 1999 Summer;11(4):257-63
pubmed: 10449257
Eur Arch Psychiatry Clin Neurosci. 1999;249(4):205-11
pubmed: 10449596
Clin Neurophysiol. 2000 Mar;111(3):417-27
pubmed: 10699401
Clin Neurophysiol. 2001 Oct;112(10):1901-11
pubmed: 11595150
Neuroimage. 2002 May;16(1):41-8
pubmed: 11969316
Nat Rev Neurosci. 2002 Sep;3(9):679-93
pubmed: 12209117
Sleep Med Rev. 2001 Jun;5(3):247-270
pubmed: 12530990
Neuroimage. 2003 Aug;19(4):1463-76
pubmed: 12948703
Proc Natl Acad Sci U S A. 2003 Sep 16;100(19):11053-8
pubmed: 12958209
Clin Neurophysiol. 2003 Nov;114(11):2043-51
pubmed: 14580602
J Neurosci Methods. 2004 Mar 15;134(1):9-21
pubmed: 15102499
Psychiatry Res. 2005 Feb 28;138(2):141-56
pubmed: 15766637
Philos Trans R Soc Lond B Biol Sci. 2005 May 29;360(1457):1015-23
pubmed: 16087445
Trends Cogn Sci. 2005 Dec;9(12):556-9
pubmed: 16271507
Behav Brain Sci. 2005 Dec;28(6):737-57; discussion 757-94
pubmed: 16372931
Neuroimage. 2006 Jul 15;31(4):1408-18
pubmed: 16537111
Brain Topogr. 2007 Fall;20(1):7-14
pubmed: 17587166
Schizophr Res. 2007 Dec;97(1-3):163-72
pubmed: 17703921
Clin Neurophysiol. 2007 Dec;118(12):2765-73
pubmed: 17911042
Arch Neurol Psychiatry. 1949 Oct;62(4):412-20
pubmed: 18142165
Biometrics. 1949 Jun;5(2):99-114
pubmed: 18151955
Brain Topogr. 2008 Jun;20(4):249-64
pubmed: 18347966
Cereb Cortex. 2009 Jan;19(1):55-65
pubmed: 18424780
Science. 2008 Nov 7;322(5903):876-80
pubmed: 18988836
Neuroimage. 2010 Jan 1;49(1):1073-9
pubmed: 19646538
Neuroimage. 2010 Oct 1;52(4):1162-70
pubmed: 20188188
J Cogn Neurosci. 2011 Mar;23(3):570-8
pubmed: 20515407
Proc Natl Acad Sci U S A. 2010 Oct 19;107(42):18179-84
pubmed: 20921381
Clin Neurophysiol. 2011 Jun;122(6):1179-82
pubmed: 21123110
Neuroimage. 2011 Apr 15;55(4):1548-65
pubmed: 21276857
Brain Topogr. 2012 Jan;25(1):20-6
pubmed: 21644026
PLoS One. 2011;6(7):e22912
pubmed: 21829554
Lancet. 2011 Dec 17;378(9809):2052-4
pubmed: 22078856
Anesthesiology. 2012 Apr;116(4):946-59
pubmed: 22314293
Neuroimage. 2012 Sep;62(3):2129-39
pubmed: 22658975
Arch Ital Biol. 2012 Jun-Sep;150(2-3):140-54
pubmed: 23165874
Clin Neurophysiol. 2013 Jun;124(6):1106-14
pubmed: 23403263
Proc Natl Acad Sci U S A. 2013 Mar 19;110(12):E1142-51
pubmed: 23487781
J Neurol. 2013 Sep;260(9):2348-56
pubmed: 23765089
Anesthesiology. 2013 Dec;119(6):1347-59
pubmed: 24013572
Electroencephalogr Clin Neurophysiol. 1987 Sep;67(3):271-88
pubmed: 2441961
Nat Rev Neurol. 2014 Feb;10(2):99-114
pubmed: 24468878
Elife. 2014 Mar 25;3:e01867
pubmed: 24668169
Neuron. 2014 May 7;82(3):695-708
pubmed: 24811386
Front Behav Neurosci. 2014 May 14;8:163
pubmed: 24860450
Sci Rep. 2014 May 28;4:5092
pubmed: 24867667
Schizophr Res. 2014 Aug;157(1-3):175-81
pubmed: 24962438
Brain Topogr. 2015 Jul;28(4):619-35
pubmed: 25168255
Curr Biol. 2014 Sep 22;24(18):2208-2214
pubmed: 25220055
PLoS Comput Biol. 2014 Oct 02;10(10):e1003866
pubmed: 25275376
PLoS Comput Biol. 2014 Oct 16;10(10):e1003887
pubmed: 25329398
Neuroimage. 2015 Jan 1;104:199-208
pubmed: 25451473
PLoS One. 2014 Dec 05;9(12):e114163
pubmed: 25479614
Int J Psychophysiol. 2015 Sep;97(3):171-3
pubmed: 26071227
Neuroimage. 2016 Jan 15;125:1104-1106
pubmed: 26091853
Neuroimage. 2016 Jan 15;125:643-656
pubmed: 26285079
Neuroimage. 2016 Feb 1;126:81-95
pubmed: 26631815
PLoS Comput Biol. 2016 Jan 14;12(1):e1004669
pubmed: 26764466
Clin Neurophysiol. 2016 May;127(5):2175-81
pubmed: 27072087
Nat Rev Neurosci. 2016 May;17(5):307-21
pubmed: 27094080
Behav Brain Res. 2016 Nov 1;314:134-42
pubmed: 27515287
Neuroimage. 2017 Feb 1;146:533-543
pubmed: 27742598
Brain. 2017 Aug 1;140(8):2120-2132
pubmed: 28666351
Neuroimage. 2017 Nov 15;162:353-361
pubmed: 28847493
Cortex. 2018 Oct;107:166-179
pubmed: 28985895
Dev Cogn Neurosci. 2018 Jun;31:58-66
pubmed: 29742488
Electroencephalogr Clin Neurophysiol. 1971 Nov;31(5):439-49
pubmed: 4107798
Electroencephalogr Clin Neurophysiol. 1980 Jun;48(6):609-21
pubmed: 6155251
Psychophysiology. 1984 Sep;21(5):510-20
pubmed: 6473620
J Clin Neurophysiol. 1995 Jul;12(4):372-86
pubmed: 7560024
IEEE Trans Biomed Eng. 1995 Jul;42(7):658-65
pubmed: 7622149
Schizophr Bull. 1994;20(1):31-46
pubmed: 8197420
Science. 1993 Oct 29;262(5134):679-85
pubmed: 8235588
Sleep. 1995 Dec;18(10):880-9
pubmed: 8746396
Trends Neurosci. 1996 Nov;19(11):456-9
pubmed: 8931266
Sleep. 1997 Jul;20(7):523-34
pubmed: 9322268
Electroencephalogr Clin Neurophysiol. 1997 Dec;103(6):633-41
pubmed: 9546491
Psychiatry Clin Neurosci. 1998 Apr;52(2):147-8
pubmed: 9628119