Machine Learning Guided Atom Mapping of Metabolic Reactions.
Journal
Journal of chemical information and modeling
ISSN: 1549-960X
Titre abrégé: J Chem Inf Model
Pays: United States
ID NLM: 101230060
Informations de publication
Date de publication:
25 03 2019
25 03 2019
Historique:
pubmed:
1
12
2018
medline:
8
5
2020
entrez:
1
12
2018
Statut:
ppublish
Résumé
Atom mapping of a chemical reaction is a mapping between the atoms in the reactant molecules and the atoms in the product molecules. It encodes the underlying reaction mechanism and, as such, constitutes essential information in computational studies in drug design. Various techniques have been investigated for the automatic computation of the atom mapping of a chemical reaction, approaching the problem as a graph matching problem. The graph abstraction of the chemical problem, though, eliminates crucial chemical information. There have been efforts for enhancing the graph representation by introducing the bond stabilities as edge weights, as they are estimated based on experimental evidence. Here, we present a fully automated optimization-based approach, named AMLGAM (Automated Machine Learning Guided Atom Mapping), that uses machine learning techniques for the estimation of the bond stabilities based on the chemical environment of each bond. The optimization method finds the reaction mechanism which favors the breakage/formation of the less stable bonds. We evaluated our method on a manually curated data set of 382 chemical reactions and ran our method on a much larger and diverse data set of 7400 chemical reactions. We show that the proposed method improves the accuracy over existing techniques based on results published by earlier studies on a common data set and is capable of handling unbalanced reactions.
Identifiants
pubmed: 30500191
doi: 10.1021/acs.jcim.8b00434
doi:
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.
Langues
eng
Sous-ensembles de citation
IM