Meiotic chromatid recombination and segregation assessed with human single cell genome sequencing data.
female pronucleus
human oocyte
meiosis
meiotic drive
polar body
Journal
Journal of medical genetics
ISSN: 1468-6244
Titre abrégé: J Med Genet
Pays: England
ID NLM: 2985087R
Informations de publication
Date de publication:
03 2019
03 2019
Historique:
received:
14
07
2018
revised:
31
10
2018
accepted:
06
11
2018
pubmed:
6
12
2018
medline:
15
5
2020
entrez:
6
12
2018
Statut:
ppublish
Résumé
The human oocyte transmits one set of haploid genome into female pronucleus (FPN) while discards the remaining genome into the first polar body (PB1) and the second polar body (PB2). The FPN genome carries an assembly of maternal and paternal genome that resulted from homologous recombination during the prophase of the first meiosis. However, how parental genome has been shuffled and transmitted is difficult to assess by analysing only the progeny's genome. To assess meiotic chromatid recombination and segregation in human oocytes. Single cell genome sequencing data of PB1, PB2 and FPN that originated from the same oocyte were used to analyse the human oocyte homologous chromosome interaction and segregation. To analyse whether chromosomes were non-randomly segregated into polar bodies or pronucleus, we analysed the ratio of crossover in PB2 and FPN, and constructed a model to detect the randomness of oocyte chromosome segregation. We found that during oocyte meiosis, in addition to homologous chromosome recombination, there was also a genome conversion phenomenon which generated a non-reciprocal genetic information transmission between homologous chromosomes. We also inferred that during meiosis, DNA breaks and repairs frequently occurred at centromere-adjacent regions. From our data we did not find obvious evidence supporting the crossover number-based or SNP-based meiotic drive in oocytes. In addition to the crossover-based recombination, during human oocyte meiosis, a direct genome conversion between homologous chromosomes is used in some oocytes. Our findings are helpful in understanding the specific features of meiotic chromatid recombination and segregation in human oocytes.
Sections du résumé
BACKGROUND
The human oocyte transmits one set of haploid genome into female pronucleus (FPN) while discards the remaining genome into the first polar body (PB1) and the second polar body (PB2). The FPN genome carries an assembly of maternal and paternal genome that resulted from homologous recombination during the prophase of the first meiosis. However, how parental genome has been shuffled and transmitted is difficult to assess by analysing only the progeny's genome.
OBJECTIVE
To assess meiotic chromatid recombination and segregation in human oocytes.
METHODS
Single cell genome sequencing data of PB1, PB2 and FPN that originated from the same oocyte were used to analyse the human oocyte homologous chromosome interaction and segregation. To analyse whether chromosomes were non-randomly segregated into polar bodies or pronucleus, we analysed the ratio of crossover in PB2 and FPN, and constructed a model to detect the randomness of oocyte chromosome segregation.
RESULTS
We found that during oocyte meiosis, in addition to homologous chromosome recombination, there was also a genome conversion phenomenon which generated a non-reciprocal genetic information transmission between homologous chromosomes. We also inferred that during meiosis, DNA breaks and repairs frequently occurred at centromere-adjacent regions. From our data we did not find obvious evidence supporting the crossover number-based or SNP-based meiotic drive in oocytes.
CONCLUSION
In addition to the crossover-based recombination, during human oocyte meiosis, a direct genome conversion between homologous chromosomes is used in some oocytes. Our findings are helpful in understanding the specific features of meiotic chromatid recombination and segregation in human oocytes.
Identifiants
pubmed: 30514739
pii: jmedgenet-2018-105612
doi: 10.1136/jmedgenet-2018-105612
doi:
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
156-163Informations de copyright
© Author(s) (or their employer(s)) 2019. No commercial re-use. See rights and permissions. Published by BMJ.
Déclaration de conflit d'intérêts
Competing interests: None declared.