Biomaterial-guided delivery of gene vectors for targeted articular cartilage repair.


Journal

Nature reviews. Rheumatology
ISSN: 1759-4804
Titre abrégé: Nat Rev Rheumatol
Pays: United States
ID NLM: 101500080

Informations de publication

Date de publication:
01 2019
Historique:
pubmed: 6 12 2018
medline: 19 2 2020
entrez: 6 12 2018
Statut: ppublish

Résumé

Articular cartilage defects are prevalent and are potentially involved in the initiation of osteoarthritis, yet the lack of efficient therapeutic options to treat cartilage defects represents a substantial challenge. Molecular treatments that require the delivery of therapeutic gene vectors are often less effective that specific, targeted approaches, and the scientific evidence for acellular biomaterial-assisted procedures is limited. Controlled delivery of gene vectors using biocompatible materials is emerging as a novel strategy for the sustained and tuneable release of gene therapies in a spatiotemporally precise manner, thereby reducing intra-articular vector spread and possible loss of the therapeutic gene product. Controlled, biomaterial-guided delivery of gene vectors could be used to enhance intrinsic mechanisms of cartilage repair while affording protection against potentially damaging host immune responses that might counteract the gene therapy component. This Review provides an overview of advances in gene vector-loaded biomaterials for articular cartilage repair. Such systems enable the sustained release of gene therapies while maintaining transduction efficacy. Strategies that harness these properties are likely to result in improved in situ cartilage tissue regeneration that could be safely translated into clinical applications in the near future.

Identifiants

pubmed: 30514957
doi: 10.1038/s41584-018-0125-2
pii: 10.1038/s41584-018-0125-2
doi:

Substances chimiques

Biocompatible Materials 0
Hydrogels 0

Types de publication

Journal Article Review

Langues

eng

Sous-ensembles de citation

IM

Pagination

18-29

Références

Guermazi, A. et al. Brief report: partial- and full-thickness focal cartilage defects contribute equally to development of new cartilage damage in knee osteoarthritis: the multicenter osteoarthritis study. Arthritis Rheumatol. 69, 560–564 (2017).
pubmed: 27788291 pmcid: 5328844
Sanders, T. L. et al. High rate of osteoarthritis after osteochondritis dissecans fragment excision compared with surgical restoration at a mean 16-year follow-up. Am. J. Sports Med. 45, 1799–1805 (2017).
pubmed: 28419816
Hunziker, E. B., Lippuner, K., Keel, M. J. & Shintani, N. An educational review of cartilage repair: precepts & practice — myths & misconceptions — progress & prospects. Osteoarthritis Cartilage 23, 334–350 (2015).
pubmed: 25534362
Makris, E. A., Gomoll, A. H., Malizos, K. N., Hu, J. C. & Athanasiou, K. A. Repair and tissue engineering techniques for articular cartilage. Nat. Rev. Rheumatol. 11, 21–34 (2015).
pubmed: 25247412
Mundi, R. et al. Cartilage restoration of the knee: a systematic review and meta-analysis of level 1 studies. Am. J. Sports Med. 44, 1888–1895 (2016).
pubmed: 26138733
Hunziker, E. B. Articular cartilage repair: basic science and clinical progress. A review of the current state and prospects. Osteoarthritis Cartilage 10, 432–463 (2002).
pubmed: 12056848
Evans, C. H. & Huard, J. Gene therapy approaches to regenerating the musculoskeletal system. Nat. Rev. Rheumatol. 11, 234–242 (2015).
pubmed: 25776949 pmcid: 4510987
Nita, I. et al. Direct gene delivery to synovium. An evaluation of potential vectors in vitro and in vivo. Arthritis Rheum. 39, 820–828 (1996).
pubmed: 8639179
Madry, H., Gao, L., Eichler, H., Orth, P. & Cucchiarini, M. Bone marrow aspirate concentrate-enhanced marrow stimulation of chondral defects. Stem Cells Int. 2017, 1609685 (2017).
pubmed: 28607559 pmcid: 5451778
Brittberg, M. et al. Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. N. Engl. J. Med. 331, 889–895 (1994).
pubmed: 8078550
Mistry, H. et al. Autologous chondrocyte implantation in the knee: systematic review and economic evaluation. Health Technol. Assess. 21, 1–294 (2017).
pubmed: 28619124 pmcid: 5494512
Knutsen, G. et al. A randomized multicenter trial comparing autologous chondrocyte implantation with microfracture: long-term follow-up at 14 to 15 years. J. Bone Joint Surg. Am. 98, 1332–1339 (2016).
pubmed: 27535435
Gao, L., Orth, P., Cucchiarini, M. & Madry, H. Autologous matrix-induced chondrogenesis: a systematic review of the clinical evidence. Am. J. Sports Med. https://doi.org/10.1177/0363546517740575 (2017).
doi: 10.1177/0363546517740575 pubmed: 29161138
Pareek, A. et al. Osteochondral autograft transfer versus microfracture in the knee: a meta-analysis of prospective comparative studies at midterm. Arthroscopy 32, 2118–2130 (2016).
pubmed: 27487736
Gracitelli, G. C. et al. Fresh osteochondral allografts in the knee: comparison of primary transplantation versus transplantation after failure of previous subchondral marrow stimulation. Am. J. Sports Med. 43, 885–891 (2015).
pubmed: 25817190
Lohmander, S. et al. Intraarticular sprifermin (recombinant human fibroblast growth factor 18) in knee osteoarthritis: a randomized, double-blind, placebo-controlled trial. Arthritis Rheumatol. 66, 1820–1831 (2014).
pubmed: 24740822
Adkar, S. S. et al. Genome engineering for personalized arthritis therapeutics. Trends Mol. Med. 23, 917–931 (2017).
pubmed: 28887050 pmcid: 5657581
Chen, X. & Goncalves, M. A. Engineered viruses as genome editing devices. Mol. Ther. 24, 447–457 (2016).
pubmed: 26336974
Cucchiarini, M. & Madry, H. Gene therapy for cartilage defects. J. Gene Med. 7, 1495–1509 (2005).
pubmed: 16142829
Evans, C. H. et al. Using gene therapy to protect and restore cartilage. Clin. Orthop. Relat. Res. 379, S214–S219 (2000).
Maeder, M. L. & Gersbach, C. A. Genome-editing technologies for gene and cell therapy. Mol. Ther. 24, 430–446 (2016).
pubmed: 26755333 pmcid: 4786923
Mali, P. et al. RNA-guided human genome engineering via Cas9. Science 339, 823–826 (2013).
pubmed: 23287722 pmcid: 3712628
Cucchiarini, M. Human gene therapy: novel approaches to improve the current gene delivery systems. Discov. Med. 21, 495–506 (2016).
pubmed: 27448786
Cucchiarini, M. et al. Improved tissue repair in articular cartilage defects in vivo by rAAV-mediated overexpression of human fibroblast growth factor 2. Mol. Ther 12, 229–238 (2005).
pubmed: 16043094
Hiraide, A. et al. Repair of articular cartilage defect by intraarticular administration of basic fibroblast growth factor gene, using adeno-associated virus vector. Hum. Gene Ther. 16, 1413–1421 (2005).
pubmed: 16390272
Menendez, M. I. et al. Direct delayed human adenoviral BMP-2 or BMP-6 gene therapy for bone and cartilage regeneration in a pony osteochondral model. Osteoarthritis Cartilage 19, 1066–1075 (2011).
pubmed: 21683796
Morisset, S., Frisbie, D. D., Robbins, P. D., Nixon, A. J. & McIlwraith, C. W. IL-1ra/IGF-1 gene therapy modulates repair of microfractured chondral defects. Clin. Orthop. Relat. Res. 462, 221–228 (2007).
pubmed: 17534189
Evans, C. H. et al. Use of genetically modified muscle and fat grafts to repair defects in bone and cartilage. Eur. Cell. Mater. 18, 96–111 (2009).
pubmed: 20073015 pmcid: 4382019
Ivkovic, A. et al. Articular cartilage repair by genetically modified bone marrow aspirate in sheep. Gene Ther. 17, 779–789 (2010).
pubmed: 20220780
Liu, T. M. et al. Zinc-finger protein 145, acting as an upstream regulator of SOX9, improves the differentiation potential of human mesenchymal stem cells for cartilage regeneration and repair. Arthritis Rheum. 63, 2711–2720 (2011).
pubmed: 21547890
Sieker, J. T. et al. Direct bone morphogenetic protein 2 and Indian hedgehog gene transfer for articular cartilage repair using bone marrow coagulates. Osteoarthritis Cartilage 23, 433–442 (2015).
pubmed: 25463442
Berns, K. I. & Linden, R. M. The cryptic life style of adeno-associated virus. Bioessays 17, 237–245 (1995).
pubmed: 7748178
Samulski, R. J., Berns, K. I., Tan, M. & Muzyczka, N. Cloning of adeno-associated virus into pBR322: rescue of intact virus from the recombinant plasmid in human cells. Proc. Natl Acad. Sci. USA 79, 2077–2081 (1982).
pubmed: 6281795
Cucchiarini, M., Orth, P. & Madry, H. Direct rAAV SOX9 administration for durable articular cartilage repair with delayed terminal differentiation and hypertrophy in vivo. J. Mol. Med. 91, 625–636 (2013).
pubmed: 23149825
Madry, H. et al. Enhanced repair of articular cartilage defects in vivo by transplanted chondrocytes overexpressing insulin-like growth factor I (IGF-I). Gene Ther. 12, 1171–1179 (2005).
pubmed: 15815701
Wehling, P. et al. Clinical responses to gene therapy in joints of two subjects with rheumatoid arthritis. Hum. Gene Ther. 20, 97–101 (2009).
pubmed: 18986219 pmcid: 2855248
Dunbar, C. E. et al. Gene therapy comes of age. Science 359, eaan4672 (2018).
pubmed: 29326244
Kim, M. K. et al. A multicenter, double-blind, phase III clinical trial to evaluate the efficacy and safety of a cell and gene therapy in knee osteoarthritis patients. Hum. Gene Ther. Clin. Dev. 29, 48–59 (2018).
pubmed: 29641281
Evans, C. H., Ghivizzani, S. C. & Robbins, P. D. Arthritis gene therapy is becoming a reality. Nat. Rev. Rheumatol. 14, 381–382 (2018).
pubmed: 29743627
Madry, H., Cucchiarini, M., Terwilliger, E. F. & Trippel, S. B. Recombinant adeno-associated virus vectors efficiently and persistently transduce chondrocytes in normal and osteoarthritic human articular cartilage. Hum. Gene Ther. 14, 393–402 (2003).
pubmed: 12659680
Schuettrumpf, J. et al. The inhibitory effects of anticoagulation on in vivo gene transfer by adeno-associated viral or adenoviral vectors. Mol. Ther 13, 88–97 (2006).
pubmed: 16230049
Anderson, J. L. & Hope, T. J. Intracellular trafficking of retroviral vectors: obstacles and advances. Gene Ther. 12, 1667–1678 (2005).
pubmed: 16292352
Glover, D. J. Artificial viruses: exploiting viral trafficking for therapeutics. Infect. Disord. Drug Targets 12, 68–80 (2012).
pubmed: 22034936
Lam, A. P. & Dean, D. A. Progress and prospects: nuclear import of nonviral vectors. Gene Ther. 17, 439–447 (2010).
pubmed: 20200566 pmcid: 4084667
Wu, P. et al. Non-viral gene delivery systems for tissue repair and regeneration. J. Transl Med. 16, 29 (2018).
pubmed: 29448962 pmcid: 5815227
Lundstrom, K. Viral vectors in gene therapy. Diseases 6, 42 (2018).
pmcid: 6023384
Appaiahgari, M. B. & Vrati, S. Adenoviruses as gene/vaccine delivery vectors: promises and pitfalls. Expert Opin. Biol. Ther. 15, 337–351 (2015).
pubmed: 25529044
Goins, W. F., Hall, B., Cohen, J. B. & Glorioso, J. C. Retargeting of herpes simplex virus (HSV) vectors. Curr. Opin. Virol. 21, 93–101 (2016).
pubmed: 27614209 pmcid: 5138136
Crystal, R. G. Adenovirus: the first effective in vivo gene delivery vector. Hum. Gene Ther. 25, 3–11 (2014).
pubmed: 24444179 pmcid: 3900005
Marshall, E. Gene therapy death prompts review of adenovirus vector. Science 286, 2244–2245 (1999).
pubmed: 10636774
Raper, S. E. et al. Fatal systemic inflammatory response syndrome in a ornithine transcarbamylase deficient patient following adenoviral gene transfer. Mol. Genet. Metab. 80, 148–158 (2003).
pubmed: 14567964
Vandamme, C., Adjali, O. & Mingozzi, F. Unraveling the complex story of immune responses to AAV vectors trial after trial. Hum. Gene Ther. 28, 1061–1074 (2017).
pubmed: 28835127 pmcid: 5649404
Felgner, P. L. et al. Lipofection: a highly efficient, lipid-mediated DNA-transfection procedure. Proc. Natl Acad. Sci. USA 84, 7413–7417 (1987).
pubmed: 2823261
Goodwin, T. & Huang, L. Nonviral vectors: we have come a long way. Adv. Genet. 88, 1–12 (2014).
pubmed: 25409601 pmcid: 5006058
Schmeer, M., Buchholz, T. & Schleef, M. Plasmid DNA manufacturing for indirect and direct clinical applications. Hum. Gene Ther. 28, 856–861 (2017).
pubmed: 28826233
Romano, G. Current development of nonviral-mediated gene transfer. Drug News Perspect. 20, 227–231 (2007).
pubmed: 17637935
Halbert, C. L. et al. Repeat transduction in the mouse lung by using adeno-associated virus vectors with different serotypes. J. Virol. 74, 1524–1532 (2000).
pubmed: 10627564 pmcid: 111488
Smith, R. H. Adeno-associated virus integration: virus versus vector. Gene Ther. 15, 817–822 (2008).
pubmed: 18401436
Flotte, T. R. et al. Stable in vivo expression of the cystic fibrosis transmembrane conductance regulator with an adeno-associated virus vector. Proc. Natl Acad. Sci. USA 90, 10613–10617 (1993).
pubmed: 7504271
Flotte, T. R., Afione, S. A. & Zeitlin, P. L. Adeno-associated virus vector gene expression occurs in nondividing cells in the absence of vector DNA integration. Am. J. Respir. Cell. Mol. Biol. 11, 517–521 (1994).
pubmed: 7946381
Ofri, R. et al. Six years and counting: restoration of photopic retinal function and visual behavior following gene augmentation therapy in a sheep model of CNGA3 achromatopsia. Hum. Gene Ther. https://doi.org/10.1089/hum.2018.076 (2018).
doi: 10.1089/hum.2018.076 pubmed: 29926749
Yan, Z., Zhang, Y., Duan, D. & Engelhardt, J. F. Trans-splicing vectors expand the utility of adeno-associated virus for gene therapy. Proc. Natl Acad. Sci. USA 97, 6716–6721 (2000).
pubmed: 10841568
Hermonat, P. L., Quirk, J. G., Bishop, B. M. & Han, L. The packaging capacity of adeno-associated virus (AAV) and the potential for wild-type-plus AAV gene therapy vectors. FEBS Lett. 407, 78–84 (1997).
pubmed: 9141485
Duan, D., Yue, Y., Yan, Z. & Engelhardt, J. F. A new dual-vector approach to enhance recombinant adeno-associated virus-mediated gene expression through intermolecular cis activation. Nat. Med. 6, 595–598 (2000).
pubmed: 10802719
Ferrari, F. K., Samulski, T., Shenk, T. & Samulski, R. J. Second-strand synthesis is a rate-limiting step for efficient transduction by recombinant adeno-associated virus vectors. J. Virol. 70, 3227–3234 (1996).
pubmed: 8627803 pmcid: 190186
Fisher, K. J. et al. Transduction with recombinant adeno-associated virus for gene therapy is limited by leading-strand synthesis. J. Virol. 70, 520–532 (1996).
pubmed: 8523565 pmcid: 189840
McCarty, D. M., Monahan, P. E. & Samulski, R. J. Self-complementary recombinant adeno-associated virus (scAAV) vectors promote efficient transduction independently of DNA synthesis. Gene Ther. 8, 1248–1254 (2001).
pubmed: 11509958
Halbert, C. L. et al. Prevalence of neutralizing antibodies against adeno-associated virus (AAV) types 2, 5, and 6 in cystic fibrosis and normal populations: implications for gene therapy using AAV vectors. Hum. Gene Ther. 17, 440–447 (2006).
pubmed: 16610931 pmcid: 4292890
Colella, P., Ronzitti, G. & Mingozzi, F. Emerging issues in AAV-mediated in vivo gene therapy. Mol. Ther. Methods Clin. Dev. 8, 87–104 (2018).
pubmed: 29326962
Cottard, V. et al. Immune response against gene therapy vectors: influence of synovial fluid on adeno-associated virus mediated gene transfer to chondrocytes. J. Clin. Immunol. 24, 162–169 (2004).
pubmed: 15024183
Mingozzi, F. et al. Overcoming preexisting humoral immunity to AAV using capsid decoys. Sci. Transl Med. 5, 194ra92 (2013).
pubmed: 23863832 pmcid: 4095828
Nayak, S. & Herzog, R. W. Progress and prospects: immune responses to viral vectors. Gene Ther. 17, 295–304 (2010).
pubmed: 19907498
Calceo, R. & Wilson, J. M. Humoral immune response to AAV. Front. Immunol. 4, 341 (2013).
Wu, T. L. & Ertl, H. C. Immune barriers to successful gene therapy. Trends Mol. Med. 15, 32–39 (2009).
pubmed: 19101205
Goater, J. et al. Empirical advantages of adeno associated viral vectors in vivo gene therapy for arthritis. J. Rheumatol. 27, 983–989 (2000).
pubmed: 10782827
Kaufmann, K. B., Buning, H., Galy, A., Schambach, A. & Grez, M. Gene therapy on the move. EMBO Mol. Med. 5, 1642–1661 (2013).
pubmed: 24106209 pmcid: 3840483
Mi, Z. et al. Adverse effects of adenovirus-mediated gene transfer of human transforming growth factor beta 1 into rabbit knees. Arthritis Res. Ther. 5, R132–R139 (2003).
pubmed: 12723985 pmcid: 165041
Hacein-Bey-Abina, S. et al. Insertional oncogenesis in 4 patients after retrovirus-mediated gene therapy of SCID-X1. J. Clin. Invest. 118, 3132–3142 (2008).
pubmed: 18688285 pmcid: 2496963
Howe, S. J. et al. Insertional mutagenesis combined with acquired somatic mutations causes leukemogenesis following gene therapy of SCID-X1 patients. J. Clin. Invest. 118, 3143–3150 (2008).
pubmed: 18688286 pmcid: 2496964
Naldini, L. et al. In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science 272, 263–267 (1996).
pubmed: 8602510
Poeschla, E., Corbeau, P. & Wong-Staal, F. Development of HIV vectors for anti-HIV gene therapy. Proc. Natl Acad. Sci. USA 93, 11395–11399 (1996).
pubmed: 8876146
Nault, J. C. et al. Recurrent AAV2-related insertional mutagenesis in human hepatocellular carcinomas. Nat. Genet. 47, 1187–1193 (2015).
pubmed: 26301494
Gil-Farina, I. et al. Recombinant AAV integration is not associated with hepatic genotoxicity in nonhuman primates and patients. Mol. Ther. 24, 1100–1105 (2016).
pubmed: 26948440 pmcid: 4923321
Srivastava, A. & Carter, B. J. AAV infection: protection from cancer. Hum. Gene Ther. 28, 323–327 (2017).
pubmed: 27832705 pmcid: 5399746
Food and Drug Administration. Guidance for industry: preparation of IDEs and INDs for products intended to repair or replace knee cartilage. FDA.gov https://www.fda.gov/downloads/ucm288011.pdf (2011).
European Commission. Good manufacturing practice for advanced therapy medicinal products. ec.europa.eu https://ec.europa.eu/health/sites/health/files/files/eudralex/vol-4/2017_11_22_guidelines_gmp_for_atmps.pdf (2017).
Baragi, V. M. et al. Transplantation of adenovirally transduced allogeneic chondrocytes into articular cartilage defects in vivo. Osteoarthritis Cartilage 5, 275–282 (1997).
pubmed: 9404472
Madry, H. & Trippel, S. B. Efficient lipid-mediated gene transfer to articular chondrocytes. Gene Ther. 7, 286–291 (2000).
pubmed: 10694808
Rey-Rico, A. et al. Determination of effective rAAV-mediated gene transfer conditions to support chondrogenic differentiation processes in human primary bone marrow aspirates. Gene Ther. 22, 50–57 (2015).
pubmed: 25338919
Halbert, C. L., Standaert, T. A., Wilson, C. B. & Miller, A. D. Successful readministration of adeno-associated virus vectors to the mouse lung requires transient immunosuppression during the initial exposure. J. Virol. 72, 9795–9805 (1998).
pubmed: 9811715 pmcid: 110491
Selot, R. S., Hareendran, S. & Jayandharan, G. R. Developing immunologically inert adeno-associated virus (AAV) vectors for gene therapy: possibilities and limitations. Curr. Pharm. Biotechnol. 14, 1072–1082 (2014).
pubmed: 24678652
Buchholz, C. J., Friedel, T. & Buning, H. Surface-engineered viral vectors for selective and cell type-specific gene delivery. Trends Biotechnol. 33, 777–790 (2015).
pubmed: 26497425
Buning, H., Huber, A., Zhang, L., Meumann, N. & Hacker, U. Engineering the AAV capsid to optimize vector-host-interactions. Curr. Opin. Pharmacol. 24, 94–104 (2015).
pubmed: 26302254
Mingozzi, F. & High, K. A. Immune responses to AAV vectors: overcoming barriers to successful gene therapy. Blood 122, 23–36 (2013).
pubmed: 23596044 pmcid: 3701904
Mitchell, A. M., Nicolson, S. C., Warischalk, J. K. & Samulski, R. J. AAV’s anatomy: roadmap for optimizing vectors for translational success. Curr. Gene Ther. 10, 319–340 (2010).
pubmed: 20712583 pmcid: 3920455
Vandenberghe, L. H., Wilson, J. M. & Gao, G. Tailoring the AAV vector capsid for gene therapy. Gene Ther. 16, 311–319 (2009).
pubmed: 19052631
Freed, L. E., Martin, I. & Vunjak-Novakovic, G. Frontiers in tissue engineering. In vitro modulation of chondrogenesis. Clin. Orthop. Relat. Res. 367, S46–S58 (1999).
Kon, E., Filardo, G., Perdisa, F., Venieri, G. & Marcacci, M. Clinical results of multilayered biomaterials for osteochondral regeneration. J. Exp. Orthop. 1, 10 (2014).
pubmed: 26914755 pmcid: 4648845
Kon, E., Roffi, A., Filardo, G., Tesei, G. & Marcacci, M. Scaffold-based cartilage treatments: with or without cells? A systematic review of preclinical and clinical evidence. Arthroscopy 31, 767–775 (2015).
pubmed: 25633817
Armiento, A. R., Stoddart, M. J., Alini, M. & Eglin, D. Biomaterials for articular cartilage tissue engineering: learning from biology. Acta Biomater. 65, 1–20 (2018).
pubmed: 29128537
Cucchiarini, M. et al. A vision on the future of articular cartilage repair. Eur. Cell. Mater. 27, 12–16 (2014).
pubmed: 24802612
Johnstone, B. et al. Tissue engineering for articular cartilage repair — the state of the art. Eur. Cell. Mater. 25, 248–267 (2013).
pubmed: 23636950
Lopa, S. & Madry, H. Bioinspired scaffolds for osteochondral regeneration. Tissue Eng. Part A 20, 2052–2076 (2014).
pubmed: 24476065
Nukavarapu, S. P. & Dorcemus, D. L. Osteochondral tissue engineering: current strategies and challenges. Biotechnol. Adv. 31, 706–721 (2013).
pubmed: 23174560
Smith, B. D. & Grande, D. A. The current state of scaffolds for musculoskeletal regenerative applications. Nat. Rev. Rheumatol. 11, 213–222 (2015).
pubmed: 25776947
Serban, M. A. Translational biomaterials-the journey from the bench to the market-think ‘product’. Curr. Opin. Biotechnol. 40, 31–34 (2016).
pubmed: 26926461
Brittberg, M. Cell carriers as the next generation of cell therapy for cartilage repair: a review of the matrix-induced autologous chondrocyte implantation procedure. Am. J. Sports Med. 38, 1259–1271 (2010).
pubmed: 19966108
Athanasiou, K. A., Niederauer, G. G. & Agrawal, C. M. Sterilization, toxicity, biocompatibility and clinical applications of polylactic acid/polyglycolic acid copolymers. Biomaterials 17, 93–102 (1996).
pubmed: 8624401
Madry, H., Kaul, G., Zurakowski, D., Vunjak-Novakovic, G. & Cucchiarini, M. Cartilage constructs engineered from chondrocytes overexpressing IGF-I improve the repair of osteochondral defects in a rabbit model. Eur. Cell. Mater. 25, 229–247 (2013).
pubmed: 23588785 pmcid: 4476264
Hinckel, B. B. & Gomoll, A. H. Autologous chondrocytes and next-generation matrix-based autologous chondrocyte implantation. Clin. Sports Med. 36, 525–548 (2017).
pubmed: 28577711
Gao, L., Orth, P., Cucchiarini, M. & Madry, H. Effects of solid acellular type-I/III collagen biomaterials on in vitro and in vivo chondrogenesis of mesenchymal stem cells. Expert Rev. Med. Devices 14, 717–732 (2017).
pubmed: 28817971
Benya, P. D. & Shaffer, J. D. Dedifferentiated chondrocytes reexpress the differentiated collagen phenotype when cultured in agarose gels. Cell 30, 215–224 (1982).
pubmed: 7127471
Vega, S. L., Kwon, M. Y. & Burdick, J. A. Recent advances in hydrogels for cartilage tissue engineering. Eur. Cell. Mater. 33, 59–75 (2017).
pubmed: 28138955 pmcid: 5748291
Filardo, G., Kon, E., Roffi, A., Di Martino, A. & Marcacci, M. Scaffold-based repair for cartilage healing: a systematic review and technical note. Arthroscopy 29, 174–186 (2013).
pubmed: 23159494
Girotto, D. et al. Tissue-specific gene expression in chondrocytes grown on three-dimensional hyaluronic acid scaffolds. Biomaterials 24, 3265–3275 (2003).
pubmed: 12763454
Jha, A. K. et al. Matrix metalloproteinase-13 mediated degradation of hyaluronic acid-based matrices orchestrates stem cell engraftment through vascular integration. Biomaterials 89, 136–147 (2016).
pubmed: 26967648 pmcid: 4851169
Kandil, A. & Safran, M. R. Hip arthroscopy: a brief history. Clin. Sports Med. 35, 321–329 (2016).
pubmed: 27343387
Seol, D. et al. Biocompatibility and preclinical feasibility tests of a temperature-sensitive hydrogel for the purpose of surgical wound pain control and cartilage repair. J. Biomed. Mater. Res. B Appl. Biomater. 101, 1508–1515 (2013).
pubmed: 24591226
Bartnikowski, M., Bartnikowski, N. J., Woodruff, M. A., Schrobback, K. & Klein, T. J. Protective effects of reactive functional groups on chondrocytes in photocrosslinkable hydrogel systems. Acta Biomater. 27, 66–76 (2015).
pubmed: 26318806
Almqvist, K. F. et al. Treatment of cartilage defects in the knee using alginate beads containing human mature allogenic chondrocytes. Am. J. Sports Med. 37, 1920–1929 (2009).
pubmed: 19542304
Kim, Y. S. et al. Comparative matched-pair analysis of the injection versus implantation of mesenchymal stem cells for knee osteoarthritis. Am. J. Sports Med. 43, 2738–2746 (2015).
pubmed: 26337418
Sofu, H. et al. Clinical and radiographic outcomes of chitosan-glycerol phosphate/blood implant are similar with hyaluronic acid-based cell-free scaffold in the treatment of focal osteochondral lesions of the knee joint. Knee Surg. Sports Traumatol. Arthrosc. https://doi.org/10.1007/s00167-018-5079-z (2018).
doi: 10.1007/s00167-018-5079-z pubmed: 30069652
Thier, S., Baumann, F., Weiss, C. & Fickert, S. Feasibility of arthroscopic autologous chondrocyte implantation in the hip using an injectable hydrogel. Hip. Int. 28, 442–449 (2017).
pubmed: 29218684
Mason, J. M. et al. Cartilage and bone regeneration using gene-enhanced tissue engineering. Clin. Orthop. Relat. Res. 379, S171–S178 (2000).
Goodrich, L. R., Hidaka, C., Robbins, P. D., Evans, C. H. & Nixon, A. J. Genetic modification of chondrocytes with insulin-like growth factor-1 enhances cartilage healing in an equine model. J. Bone Joint Surg. Br. 89, 672–685 (2007).
pubmed: 17540757
Grande, D. A., Mason, J., Light, E. & Dines, D. Stem cells as platforms for delivery of genes to enhance cartilage repair. J. Bone Joint Surg. Am. 85-A, 111–116 (2003).
Cao, L. et al. The promotion of cartilage defect repair using adenovirus mediated Sox9 gene transfer of rabbit bone marrow mesenchymal stem cells. Biomaterials 32, 3910–3920 (2011).
pubmed: 21377725
Lam, J., Lu, S., Kasper, F. K. & Mikos, A. G. Strategies for controlled delivery of biologics for cartilage repair. Adv. Drug Deliv. Rev. 84, 123–134 (2015).
pubmed: 24993610
Lee, S. J. Cytokine delivery and tissue engineering. Yonsei Med. J. 41, 704–719 (2000).
pubmed: 11204822
Pannier, A. K. & Shea, L. D. Controlled release systems for DNA delivery. Mol. Ther. 10, 19–26 (2004).
pubmed: 15233938
Rey-Rico, A. et al. PEO-PPO-PEO carriers for rAAV-mediated transduction of human articular chondrocytes in vitro and in a human osteochondral defect model. ACS Appl. Mater. Interfaces 8, 20600–20613 (2016).
pubmed: 27404480
Dupont, K. M. et al. Synthetic scaffold coating with adeno-associated virus encoding BMP2 to promote endogenous bone repair. Cell Tissue Res. 347, 575–588 (2012).
pubmed: 21695398
Fang, J. et al. Stimulation of new bone formation by direct transfer of osteogenic plasmid genes. Proc. Natl Acad. Sci. USA 93, 5753–5758 (1996).
pubmed: 8650165
Brunger, J. M. et al. Scaffold-mediated lentiviral transduction for functional tissue engineering of cartilage. Proc. Natl Acad. Sci. USA 111, E798–E806 (2014).
pubmed: 24550481
Glass, K. A. et al. Tissue-engineered cartilage with inducible and tunable immunomodulatory properties. Biomaterials 35, 5921–5931 (2014).
pubmed: 24767790 pmcid: 4047672
Moutos, F. T. et al. Anatomically shaped tissue-engineered cartilage with tunable and inducible anticytokine delivery for biological joint resurfacing. Proc. Natl Acad. Sci. USA 113, E4513–E4522 (2016).
pubmed: 27432980
Diaz-Rodriguez, P., Rey-Rico, A., Madry, H., Landin, M. & Cucchiarini, M. Effective genetic modification and differentiation of hMSCs upon controlled release of rAAV vectors using alginate/poloxamer composite systems. Int. J. Pharm. 496, 614–626 (2015).
pubmed: 26556623
Lee, H. H. et al. Release of bioactive adeno-associated virus from fibrin scaffolds: effects of fibrin glue concentrations. Tissue Eng. Part A 17, 1969–1978 (2011).
pubmed: 21449684 pmcid: 3142631
Rey-Rico, A. et al. Effective and durable genetic modification of human mesenchymal stem cells via controlled release of rAAV vectors from self-assembling peptide hydrogels with a maintained differentiation potency. Acta Biomater. 18, 118–127 (2015).
pubmed: 25712390
Rey-Rico, A. et al. rAAV-mediated overexpression of TGF-beta via vector delivery in polymeric micelles stimulates the biological and reparative activities of human articular chondrocytes in vitro and in a human osteochondral defect model. Int. J. Nanomed. 12, 6985–6996 (2017).
Rey-Rico, A. et al. PEO-PPO-PEO micelles as effective rAAV-mediated gene delivery systems to target human mesenchymal stem cells without altering their differentiation potency. Acta Biomater. 27, 42–52 (2015).
pubmed: 26320543
Rey-Rico, A. et al. Supramolecular polypseudorotaxane gels for controlled delivery of rAAV vectors in human mesenchymal stem cells for regenerative medicine. Int. J. Pharm. 531, 492–503 (2017).
pubmed: 28552768
Singh, M. et al. Cationic microparticles: a potent delivery system for DNA vaccines. Proc. Natl Acad. Sci. USA 97, 811–816 (2000).
pubmed: 10639162
Zhao, R., Peng, X., Li, Q. & Song, W. Effects of phosphorylatable short peptide-conjugated chitosan-mediated IL-1Ra and IGF-1 gene transfer on articular cartilage defects in rabbits. PLoS ONE 9, e112284 (2014).
pubmed: 25390659 pmcid: 4229204
Li, B. et al. Fabrication of poly(lactide-co-glycolide) scaffold filled with fibrin gel, mesenchymal stem cells, and poly(ethylene oxide)-b-poly(L-lysine)/TGF-beta1 plasmid DNA complexes for cartilage restoration in vivo. J. Biomed. Mater. Res. A 101, 3097–3108 (2013).
pubmed: 23529956
Li, B. et al. Poly(lactide-co-glycolide)/fibrin gel construct as a 3D model to evaluate gene therapy of cartilage in vivo. Mol. Pharm 11, 2062–2070 (2014).
pubmed: 24620749
Wang, W. et al. In vivo restoration of full-thickness cartilage defects by poly(lactide-co-glycolide) sponges filled with fibrin gel, bone marrow mesenchymal stem cells and DNA complexes. Biomaterials 31, 5953–5965 (2010).
pubmed: 20488531
Almarza, D., Cucchiarini, M. & Loughlin, J. Genome editing for human osteoarthritis - a perspective. Osteoarthritis Cartilage 25, 1195–1198 (2017).
pubmed: 28529161
Brunger, J. M., Zutshi, A., Willard, V. P., Gersbach, C. A. & Guilak, F. CRISPR/Cas9 editing of murine induced pluripotent stem cells for engineering inflammation-resistant tissues. Arthritis Rheumatol. 69, 1111–1121 (2017).
pubmed: 27813286 pmcid: 5406241
Brunger, J. M., Zutshi, A., Willard, V. P., Gersbach, C. A. & Guilak, F. Genome engineering of stem cells for autonomously regulated, closed-loop delivery of biologic drugs. Stem Cell Rep. 8, 1202–1213 (2017).
Farhang, N. et al. CRISPR-based epigenome editing of cytokine receptors for the promotion of cell survival and tissue deposition in inflammatory environments. Tissue Eng. Part A 23, 738–749 (2017).
pubmed: 28095751 pmcid: 5568019
van der Kraan, P. M. The changing role of TGFβ in healthy, ageing and osteoarthritic joints. Nat. Rev. Rheumatol. 13, 155–163 (2017).
pubmed: 28148919
Madry, H. & Cucchiarini, M. Gene therapy for human osteoarthritis: principles and clinical translation. Expert Opin. Biol. Ther. 16, 331–346 (2016).
pubmed: 26593049
Nixon, A. J. et al. Matrix-induced autologous chondrocyte implantation (MACI) using a cell-seeded collagen membrane improves cartilage healing in the equine model. J. Bone Joint Surg. Am. 99, 1987–1998 (2017).
pubmed: 29206788
Schmidt-Bleek, K., Willie, B. M., Schwabe, P., Seemann, P. & Duda, G. N. BMPs in bone regeneration: less is more effective, a paradigm-shift. Cytokine Growth Factor Rev. 27, 141–148 (2016).
pubmed: 26678813
Eglitis, M. A., Kohn, D. B., Moen, R. C., Blaese, R. M. & Anderson, W. F. Infection of human hematopoietic progenitor cells using a retroviral vector with a xenotropic pseudotype. Biochem. Biophys. Res. Commun. 151, 201–206 (1988).
pubmed: 3348773
Miller, A. D., Jolly, D. J., Friedmann, T. & Verma, I. M. A transmissible retrovirus expressing human hypoxanthine phosphoribosyltransferase (HPRT): gene transfer into cells obtained from humans deficient in HPRT. Proc. Natl Acad. Sci. USA 80, 4709–4713 (1983).
pubmed: 6308645
Xiao, X., Li, J. & Samulski, R. J. Efficient long-term gene transfer into muscle tissue of immunocompetent mice by adeno-associated virus vector. J. Virol. 70, 8098–8108 (1996).
pubmed: 8892935 pmcid: 190884
Cucchiarini, M. & Madry, H. Overexpression of human IGF-I via direct rAAV-mediated gene transfer improves the early repair of articular cartilage defects in vivo. Gene Ther. 21, 811–819 (2014).
pubmed: 24989812
Pagnotto, M. R. et al. Adeno-associated viral gene transfer of transforming growth factor-beta1 to human mesenchymal stem cells improves cartilage repair. Gene Ther. 14, 804–813 (2007).
pubmed: 17344902
Park, J. et al. Transgene-activated mesenchymal cells for articular cartilage repair: a comparison of primary bone marrow-, perichondrium/periosteum- and fat-derived cells. J. Gene Med. 8, 112–125 (2006).
pubmed: 16142704
Kubo, S. et al. Blocking vascular endothelial growth factor with soluble Flt-1 improves the chondrogenic potential of mouse skeletal muscle-derived stem cells. Arthritis Rheum. 60, 155–165 (2009).
pubmed: 19116905 pmcid: 3075626
Matsumoto, T. et al. The influence of sex on the chondrogenic potential of muscle-derived stem cells: implications for cartilage regeneration and repair. Arthritis Rheum. 58, 3809–3819 (2008).
pubmed: 19035511
Gelse, K., von der Mark, K., Aigner, T., Park, J. & Schneider, H. Articular cartilage repair by gene therapy using growth factor-producing mesenchymal cells. Arthritis Rheum. 48, 430–441 (2003).
pubmed: 12571853
Che, J. H. et al. Application of tissue-engineered cartilage with BMP-7 gene to repair knee joint cartilage injury in rabbits. Knee Surg. Sports Traumatol. Arthrosc. 18, 496–503 (2010).
pubmed: 19855958
Kaul, G. et al. Local stimulation of articular cartilage repair by transplantation of encapsulated chondrocytes overexpressing human fibroblast growth factor 2 (FGF-2) in vivo. J. Gene Med. 8, 100–111 (2006).
pubmed: 16097039
Orth, P. et al. Transplanted articular chondrocytes co-overexpressing IGF-I and FGF-2 stimulate cartilage repair in vivo. Knee Surg. Sports Traumatol. Arthrosc. 19, 2119–2130 (2011).
pubmed: 21350959
Yokoo, N. et al. Repair of articular cartilage defect by autologous transplantation of basic fibroblast growth factor gene-transduced chondrocytes with adeno-associated virus vector. Arthritis Rheum. 52, 164–170 (2005).
pubmed: 15641065
Xia, X. et al. Matrigel scaffold combined with Ad-hBMP7-transfected chondrocytes improves the repair of rabbit cartilage defect. Exp. Ther. Med. 13, 542–550 (2017).
pubmed: 28352329
Qi, B. W., Yu, A. X., Zhu, S. B., Zhou, M. & Wu, G. Chitosan/poly(vinyl alcohol) hydrogel combined with Ad-hTGF-beta1 transfected mesenchymal stem cells to repair rabbit articular cartilage defects. Exp. Biol. Med. 238, 23–30 (2013).
Zhu, S. et al. Combined effects of connective tissue growth factor-modified bone marrow-derived mesenchymal stem cells and NaOH-treated PLGA scaffolds on the repair of articular cartilage defect in rabbits. Cell Transplant. 23, 715–727 (2014).
pubmed: 24763260
Hu, B. et al. Enhanced treatment of articular cartilage defect of the knee by intra-articular injection of Bcl-xL-engineered mesenchymal stem cells in rabbit model. J. Tissue Eng. Regen. Med. 4, 105–114 (2010).
pubmed: 19927304
Katayama, R. et al. Repair of articular cartilage defects in rabbits using CDMP1 gene-transfected autologous mesenchymal cells derived from bone marrow. Rheumatology 43, 980–985 (2004).
pubmed: 15187242
Guo, X. et al. Repair of full-thickness articular cartilage defects by cultured mesenchymal stem cells transfected with the transforming growth factor beta1 gene. Biomed. Mater. 1, 206–215 (2006).
pubmed: 18458408
Shi, J. et al. Nanoparticle delivery of the bone morphogenetic protein 4 gene to adipose-derived stem cells promotes articular cartilage repair in vitro and in vivo. Arthroscopy 29, 2001–2011 (2013).
pubmed: 24286799
Gelse, K. et al. Chondrogenic differentiation of growth factor-stimulated precursor cells in cartilage repair tissue is associated with increased HIF-1alpha activity. Osteoarthritis Cartilage 16, 1457–1465 (2008).
pubmed: 18524637
Hidaka, C. et al. Acceleration of cartilage repair by genetically modified chondrocytes over expressing bone morphogenetic protein-7. J. Orthop. Res. 21, 573–583 (2003).
pubmed: 12798054
Griffin, D. J., Ortved, K. F., Nixon, A. J. & Bonassar, L. J. Mechanical properties and structure-function relationships in articular cartilage repaired using IGF-I gene-enhanced chondrocytes. J. Orthop. Res. 34, 149–153 (2016).
pubmed: 26308948
Ortved, K. F., Begum, L., Mohammed, H. O. & Nixon, A. J. Implantation of rAAV5-IGF-I transduced autologous chondrocytes improves cartilage repair in full-thickness defects in the equine model. Mol. Ther. 23, 363–373 (2015).
pubmed: 25311491
Andree, C. et al. Plasmid gene delivery to human keratinocytes through a fibrin-mediated transfection system. Tissue Eng. 7, 757–766 (2001).
pubmed: 11749732
Bielinska, A. U. et al. Application of membrane-based dendrimer/DNA complexes for solid phase transfection in vitro and in vivo. Biomaterials 21, 877–887 (2000).
pubmed: 10735464
Lee, C. R., Grodzinsky, A. J., Hsu, H. P. & Spector, M. Effects of a cultured autologous chondrocyte-seeded type II collagen scaffold on the healing of a chondral defect in a canine model. J. Orthop. Res. 21, 272–281 (2003).
pubmed: 12568959
Li, Z. et al. Controlled gene delivery system based on thermosensitive biodegradable hydrogel. Pharm. Res. 20, 884–888 (2003).
pubmed: 12817892
Shin, S. & Shea, L. D. Lentivirus immobilization to nanoparticles for enhanced and localized delivery from hydrogels. Mol. Ther. 18, 700–706 (2010).
pubmed: 20051940 pmcid: 2862523
Shin, S., Tuinstra, H. M., Salvay, D. M. & Shea, L. D. Phosphatidylserine immobilization of lentivirus for localized gene transfer. Biomaterials 31, 4353–4359 (2010).
pubmed: 20206382 pmcid: 2845527
Cohen-Sacks, H. et al. Delivery and expression of pDNA embedded in collagen matrices. J. Control. Release 95, 309–320 (2004).
pubmed: 14980779
Doukas, J. et al. Delivery of FGF genes to wound repair cells enhances arteriogenesis and myogenesis in skeletal muscle. Mol. Ther. 5, 517–527 (2002).
pubmed: 11991742
Ochiya, T. et al. New delivery system for plasmid DNA in vivo using atelocollagen as a carrier material: the Minipellet. Nat. Med 5, 707–710 (1999).
pubmed: 10371512
Fukunaka, Y., Iwanaga, K., Morimoto, K., Kakemi, M. & Tabata, Y. Controlled release of plasmid DNA from cationized gelatin hydrogels based on hydrogel degradation. J. Control. Release 80, 333–343 (2002).
pubmed: 11943409
Kushibiki, T., Tomoshige, R., Fukunaka, Y., Kakemi, M. & Tabata, Y. In vivo release and gene expression of plasmid DNA by hydrogels of gelatin with different cationization extents. J. Control. Release 90, 207–216 (2003).
pubmed: 12810303
Garcia del Barrio, G., Hendry, J., Renedo, M. J., Irache, J. M. & Novo, F. J. In vivo sustained release of adenoviral vectors from poly(D,L-lactic-co-glycolic) acid microparticles prepared by TROMS. J. Control. Release 94, 229–235 (2004).
pubmed: 14684286
Schek, R. M., Hollister, S. J. & Krebsbach, P. H. Delivery and protection of adenoviruses using biocompatible hydrogels for localized gene therapy. Mol. Ther. 9, 130–138 (2004).
pubmed: 14741786
Thomas, A. M., Palma, J. L. & Shea, L. D. Sponge-mediated lentivirus delivery to acute and chronic spinal cord injuries. J. Control. Release 204, 1–10 (2015).
pubmed: 25724274 pmcid: 4385414
Thomas, A. M. & Shea, L. D. Polysaccharide-modified scaffolds for controlled lentivirus delivery in vitro and after spinal cord injury. J. Control. Release 170, 421–429 (2013).
pubmed: 23791981 pmcid: 3742643
Bonadio, J., Smiley, E., Patil, P. & Goldstein, S. Localized, direct plasmid gene delivery in vivo: prolonged therapy results in reproducible tissue regeneration. Nat. Med. 5, 753–759 (1999).
pubmed: 10395319
Huang, Y. C., Simmons, C., Kaigler, D., Rice, K. G. & Mooney, D. J. Bone regeneration in a rat cranial defect with delivery of PEI-condensed plasmid DNA encoding for bone morphogenetic protein-4 (BMP-4). Gene Ther. 12, 418–426 (2005).
pubmed: 15647766
Hu, W. W., Wang, Z., Hollister, S. J. & Krebsbach, P. H. Localized viral vector delivery to enhance in situ regenerative gene therapy. Gene Ther. 14, 891–901 (2007).
pubmed: 17344901

Auteurs

Magali Cucchiarini (M)

Centre of Experimental Orthopaedics, Saarland University Medical Centre and Saarland University, Homburg, Germany. mmcucchiarini@hotmail.com.

Henning Madry (H)

Centre of Experimental Orthopaedics, Saarland University Medical Centre and Saarland University, Homburg, Germany.
Department of Orthopaedic Surgery, Saarland University Medical Centre and Saarland University, Homburg, Germany.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH