Calculating deep brain stimulation amplitudes and power consumption by constrained optimization.


Journal

Journal of neural engineering
ISSN: 1741-2552
Titre abrégé: J Neural Eng
Pays: England
ID NLM: 101217933

Informations de publication

Date de publication:
02 2019
Historique:
pubmed: 14 12 2018
medline: 21 5 2020
entrez: 8 12 2018
Statut: ppublish

Résumé

Deep brain stimulation (DBS) consists of delivering electrical stimuli to a brain target via an implanted lead to treat neurological and psychiatric conditions. Individualized stimulation is vital to ensure therapeutic results, since DBS may otherwise become ineffective or cause undesirable side effects. Since the DBS pulse generator is battery-driven, power consumption incurred by the stimulation is important. In this study, target coverage and power consumption are compared over a patient population for clinical and model-based patient-specific settings calculated by constrained optimization. Brain models for five patients undergoing bilateral DBS were built. Mathematical optimization of activated tissue volume was utilized to calculate stimuli amplitudes, with and without specifying the volumes, where stimulation was not allowed to avoid side effects. Power consumption was estimated using measured impedance values and battery life under both clinical and optimized settings. It was observed that clinical settings were generally less aggressive than the ones suggested by unconstrained model-based optimization, especially under asymmetrical stimulation. The DBS settings satisfying the constraints were close to the clinical values. The use of mathematical models to suggest optimal patient-specific DBS settings that observe technological and safety constraints can save time in clinical practice. It appears though that the considered safety constraints based on brain anatomy depend on the patient and further research into it is needed. This work highlights the need of specifying the brain volumes to be avoided by stimulation while optimizing the DBS amplitude, in contrast to minimizing general stimuli overspill, and applies the technique to a cohort of patients. It also stresses the importance of considering power consumption in DBS optimization, since it increases with the square of the stimuli amplitude and also critically affects battery life through pulse frequency and duty cycle.

Identifiants

pubmed: 30524006
doi: 10.1088/1741-2552/aaeeb7
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

016020

Auteurs

Ruben Cubo (R)

Department of Information Technology, Uppsala University, Box 337, 75105 Uppsala, Sweden.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH