WIlsON: Web-based Interactive Omics VisualizatioN.


Journal

Bioinformatics (Oxford, England)
ISSN: 1367-4811
Titre abrégé: Bioinformatics
Pays: England
ID NLM: 9808944

Informations de publication

Date de publication:
15 03 2019
Historique:
received: 21 12 2017
revised: 12 06 2018
accepted: 20 08 2018
pubmed: 12 12 2018
medline: 1 1 2020
entrez: 12 12 2018
Statut: ppublish

Résumé

High throughput (HT) screens in the omics field are typically analyzed by automated pipelines that generate static visualizations and comprehensive spreadsheet data for scientists. However, exploratory and hypothesis driven data analysis are key aspects of the understanding of biological systems, both generating extensive need for customized and dynamic visualization. Here we describe WIlsON, an interactive workbench for analysis and visualization of multi-omics data. It is primarily intended to empower screening platforms to offer access to pre-calculated HT screen results to the non-computational scientist. Facilitated by an open file format, WIlsON supports all types of omics screens, serves results via a web-based dashboard, and enables end users to perform analyses and generate publication-ready plots. We implemented WIlsON in R with a focus on extensibility using the modular Shiny and Plotly frameworks. A demo of the interactive workbench without limitations may be accessed at http://loosolab.mpi-bn.mpg.de. A standalone Docker container as well as the source code of WIlsON are freely available from our Docker hub https://hub.docker. com/r/loosolab/wilson, CRAN https://cran.r-project.org/web/packages/wilson/, and GitHub repository https://github.molgen.mpg.de/loosolab/wilson-apps, respectively.

Identifiants

pubmed: 30535135
pii: 5078467
doi: 10.1093/bioinformatics/bty711
pmc: PMC6419899
doi:

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

1055-1057

Informations de copyright

© The Author(s) 2018. Published by Oxford University Press.

Références

Nat Commun. 2015 Jun 01;6:7140
pubmed: 26028225
Nat Biotechnol. 2008 Dec;26(12):1367-72
pubmed: 19029910
Bioinformatics. 2017 Feb 1;33(3):447-449
pubmed: 28171615
Nat Protoc. 2016 Dec;11(12):2301-2319
pubmed: 27809316
Oncotarget. 2017 May 19;8(32):52995-53016
pubmed: 28881789
Mol Cell Proteomics. 2018 Feb;17(2):270-289
pubmed: 29141914
Epigenetics Chromatin. 2015 Dec 01;8:51
pubmed: 26628921
Genome Biol. 2014;15(12):550
pubmed: 25516281
PLoS One. 2017 Nov 2;12(11):e0187457
pubmed: 29095940

Auteurs

Hendrik Schultheis (H)

Max Planck Institute for Heart and Lung Research, Bioinformatics Core Unit (BCU), 61231 Bad Nauheim, Germany.

Carsten Kuenne (C)

Max Planck Institute for Heart and Lung Research, Bioinformatics Core Unit (BCU), 61231 Bad Nauheim, Germany.

Jens Preussner (J)

Max Planck Institute for Heart and Lung Research, Bioinformatics Core Unit (BCU), 61231 Bad Nauheim, Germany.

Rene Wiegandt (R)

Max Planck Institute for Heart and Lung Research, Bioinformatics Core Unit (BCU), 61231 Bad Nauheim, Germany.

Annika Fust (A)

Max Planck Institute for Heart and Lung Research, Bioinformatics Core Unit (BCU), 61231 Bad Nauheim, Germany.

Mette Bentsen (M)

Max Planck Institute for Heart and Lung Research, Bioinformatics Core Unit (BCU), 61231 Bad Nauheim, Germany.

Mario Looso (M)

Max Planck Institute for Heart and Lung Research, Bioinformatics Core Unit (BCU), 61231 Bad Nauheim, Germany.

Articles similaires

Selecting optimal software code descriptors-The case of Java.

Yegor Bugayenko, Zamira Kholmatova, Artem Kruglov et al.
1.00
Software Algorithms Programming Languages

Exploring blood-brain barrier passage using atomic weighted vector and machine learning.

Yoan Martínez-López, Paulina Phoobane, Yanaima Jauriga et al.
1.00
Blood-Brain Barrier Machine Learning Humans Support Vector Machine Software
Cephalometry Humans Anatomic Landmarks Software Internet
Humans Algorithms Software Artificial Intelligence Computer Simulation

Classifications MeSH