Cytosolic lipid excess-induced mitochondrial dysfunction is the cause or effect of high fat diet-induced skeletal muscle insulin resistance: a molecular insight.
Cytosolic lipids
High fat diet
Insulin resistance
Mitochondria
Type 2 diabetes mellitus
Journal
Molecular biology reports
ISSN: 1573-4978
Titre abrégé: Mol Biol Rep
Pays: Netherlands
ID NLM: 0403234
Informations de publication
Date de publication:
Feb 2019
Feb 2019
Historique:
received:
21
05
2018
accepted:
30
11
2018
pubmed:
12
12
2018
medline:
11
7
2019
entrez:
12
12
2018
Statut:
ppublish
Résumé
Mitochondria play a central role in the energy homeostasis in eukaryotic cells by generating ATP via oxidative metabolism of nutrients. Excess lipid accumulation and impairments in mitochondrial function have been considered as putative mechanisms for the pathogenesis of skeletal muscle insulin resistance. Accumulation of lipids in tissues occurs due to either excessive fatty acid uptake, decreased fatty acid utilization or both. Consequently, elevated levels cytosolic lipid metabolites, triglycerides, diacylglycerol and ceramides have been demonstrated to adversely affect glucose homeostasis. Several recent studies indicate that reduced insulin-stimulated ATP synthesis and reduced expression of mitochondrial enzymes and PPAR-γ coactivator, in high fat feeding (lipid overload) are associated with insulin resistance. Despite the fact, few notable studies suggest mitochondrial dysfunction is prevalent in type 2 diabetes mellitus; it is still not clear whether the defects in mitochondrial function are the cause of insulin resistance or the consequential effects of insulin resistance itself. Thus, there is a growing interest in understanding the intricacies of mitochondrial function and its association with cytosolic lipid excess. This review therefore critically examines the molecular cascades linking cytosolic lipid excess and mitochondrial dysfunction in the pathogenesis of high fat diet-induced insulin resistance in skeletal muscle. The sequential processes following the excess intake of high fat diet in skeletal muscle includes, accumulation of cytosolic fatty acids, increased production of reactive oxygen species, mutations and ageing, and decreased mitochondrial biogenesis. The consequent mitochondrial dysfunction is then leading to decreased β-oxidation, respiratory functions and glycolysis and increased glucolipotoxicity. These events collectively induce the insulin resistance in skeletal muscle.
Identifiants
pubmed: 30535784
doi: 10.1007/s11033-018-4551-7
pii: 10.1007/s11033-018-4551-7
doi:
Substances chimiques
Lipids
0
Types de publication
Journal Article
Review
Langues
eng
Sous-ensembles de citation
IM
Pagination
957-963Références
Corpeleijn E, Saris WH, Blaak EE (2009) Metabolic flexibility in the development of insulin resistance and type 2 diabetes: effects of lifestyle. Obes Rev 10(2):178–193
pubmed: 19207879
doi: 10.1111/j.1467-789X.2008.00544.x
Lark D, Fisher-Wellman K, Neufer P (2012) High-fat load: mechanism (s) of insulin resistance in skeletal muscle. Int J Obes Suppl 2:S31–S36
pubmed: 26052434
pmcid: 4457392
doi: 10.1038/ijosup.2012.20
Krebs M, Roden M (2004) Nutrient-induced insulin resistance in human skeletal muscle. Curr Med Chem 11(7):901–908
pubmed: 15078172
doi: 10.2174/0929867043455620
Holland WL, Summers SA (2008) Sphingolipids, insulin resistance, and metabolic disease: new insights from in vivo manipulation of sphingolipid metabolism. Endocr Rev 29(4):381–402
pubmed: 18451260
pmcid: 2528849
doi: 10.1210/er.2007-0025
Perseghin G et al (1999) Intramyocellular triglyceride content is a determinant of in vivo insulin resistance in humans: a 1H-13C nuclear magnetic resonance spectroscopy assessment in offspring of type 2 diabetic parents. Diabetes 48(8):1600–1606
pubmed: 10426379
doi: 10.2337/diabetes.48.8.1600
Brehm A et al (2006) Increased lipid availability impairs insulin-stimulated ATP synthesis in human skeletal muscle. Diabetes 55(1):136–140
pubmed: 16380486
doi: 10.2337/diabetes.55.01.06.db05-1286
Befroy DE et al (2007) Impaired mitochondrial substrate oxidation in muscle of insulin-resistant offspring of type 2 diabetic patients. Diabetes 56(5):1376–1381
pubmed: 17287462
pmcid: 2995532
doi: 10.2337/db06-0783
Krssak M et al (1999) Intramyocellular lipid concentrations are correlated with insulin sensitivity in humans: a 1H NMR spectroscopy study. Diabetologia 42(1):113–116
pubmed: 10027589
doi: 10.1007/s001250051123
Mogensen M et al (2007) Mitochondrial respiration is decreased in skeletal muscle of patients with type 2 diabetes. Diabetes 56(6):1592–1599
pubmed: 17351150
doi: 10.2337/db06-0981
Ashrafian H, Frenneaux MP, Opie LH (2007) Metabolic mechanisms in heart failure. Circulation 116(4):434–448
pubmed: 17646594
doi: 10.1161/CIRCULATIONAHA.107.702795
Ren J et al (2010) Mitochondrial biogenesis in the metabolic syndrome and cardiovascular disease. J Mol Med 88(10):993–1001
pubmed: 20725711
pmcid: 4319704
doi: 10.1007/s00109-010-0663-9
Wiederkehr A, Wollheim CB (2006) Minireview: implication of mitochondria in insulin secretion and action. Endocrinology 147(6):2643–2649
pubmed: 16556766
doi: 10.1210/en.2006-0057
Brownlee M, The pathobiology of diabetic complications: a unifying mechanism. diabetes, 2005. 54(6): p. 1615–1625
Holloszy JO (2013) “Deficiency” of mitochondria in muscle does not cause insulin resistance. Diabetes 62(4):1036–1040
pubmed: 23520283
pmcid: 3609559
doi: 10.2337/db12-1107
Liesa M, Shirihai OS (2013) Mitochondrial dynamics in the regulation of nutrient utilization and energy expenditure. Cell Metab 17(4):491–506
pubmed: 23562075
pmcid: 5967396
doi: 10.1016/j.cmet.2013.03.002
Simoneau J-A, Kelley DE (1997) Altered glycolytic and oxidative capacities of skeletal muscle contribute to insulin resistance in NIDDM. J Appl Physiol 83(1):166–171
pubmed: 9216960
doi: 10.1152/jappl.1997.83.1.166
Petersen KF et al (2004) Impaired mitochondrial activity in the insulin-resistant offspring of patients with type 2 diabetes. N Engl J Med 350(7):664–671
pubmed: 14960743
pmcid: 2995502
doi: 10.1056/NEJMoa031314
Fisher-Wellman KH, Neufer PD (2012) Linking mitochondrial bioenergetics to insulin resistance via redox biology. Trends Endocrinol Metab 23(3):142–153
pubmed: 22305519
pmcid: 3313496
doi: 10.1016/j.tem.2011.12.008
Muoio DM, Neufer PD (2012) Lipid-induced mitochondrial stress and insulin action in muscle. Cell Metab 15(5):595–605
pubmed: 22560212
pmcid: 3348508
doi: 10.1016/j.cmet.2012.04.010
Hegarty B et al (2003) The role of intramuscular lipid in insulin resistance. Acta Physiol 178(4):373–383
doi: 10.1046/j.1365-201X.2003.01162.x
Lowell BB, Shulman GI (2005) Mitochondrial dysfunction and type 2 diabetes. Science 307(5708):384–387
pubmed: 15662004
doi: 10.1126/science.1104343
pmcid: 15662004
Montgomery MK, Turner N (2015) Mitochondrial dysfunction and insulin resistance: an update. Endocr Connect 4(1):R1–R15
pubmed: 25385852
doi: 10.1530/EC-14-0092
Frankenfield DC, Muth ER, Rowe WA (1998) The Harris-Benedict studies of human basal metabolism: history and limitations. J Am Diet Assoc 98(4):439–445
pubmed: 9550168
doi: 10.1016/S0002-8223(98)00100-X
Garland P, Newsholme E, Randle P (1962) Effect of fatty acids, ketone bodies, diabetes and starvation on pyruvate metabolism in rat heart and diaphragm muscle. Nature 195(4839):381
pubmed: 13896984
doi: 10.1038/195381a0
Randle P et al (1963) The glucose fatty-acid cycle its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus. Lancet 281(7285):785–789
doi: 10.1016/S0140-6736(63)91500-9
Sugden MC, Holness MJ (2006) Mechanisms underlying regulation of the expression and activities of the mammalian pyruvate dehydrogenase kinases. Arch Physiol Biochem 112(3):139–149
pubmed: 17132539
doi: 10.1080/13813450600935263
Shulman GI (2000) Cellular mechanisms of insulin resistance. J Clin Invest 106(2):171–176
pubmed: 10903330
pmcid: 314317
doi: 10.1172/JCI10583
Erion DM, Shulman GI (2010) Diacylglycerol-mediated insulin resistance. Nat Med 16(4):400
pubmed: 20376053
pmcid: 3730126
doi: 10.1038/nm0410-400
Ritov VB et al (2005) Deficiency of subsarcolemmal mitochondria in obesity and type 2 diabetes. Diabetes 54(1):8–14
pubmed: 15616005
doi: 10.2337/diabetes.54.1.8
Petersen KF, Dufour S, Shulman GI (2005) Decreased insulin-stimulated ATP synthesis and phosphate transport in muscle of insulin-resistant offspring of type 2 diabetic parents. PLoS Med 2(9):e233
pubmed: 16089501
pmcid: 1184227
doi: 10.1371/journal.pmed.0020233
Sparks LM et al (2005) A high-fat diet coordinately downregulates genes required for mitochondrial oxidative phosphorylation in skeletal muscle. Diabetes 54(7):1926–1933
pubmed: 15983191
doi: 10.2337/diabetes.54.7.1926
Lionetti L et al (2007) Skeletal muscle subsarcolemmal mitochondrial dysfunction in high-fat fed rats exhibiting impaired glucose homeostasis. Int J Obes 31(10):1596
doi: 10.1038/sj.ijo.0803636
Muoio DM (2010) Intramuscular triacylglycerol and insulin resistance: guilty as charged or wrongly accused? Biochim Biophys Acta BBA 1801(3):281–288
pubmed: 19958841
doi: 10.1016/j.bbalip.2009.11.007
Bonnard C et al (2008) Mitochondrial dysfunction results from oxidative stress in the skeletal muscle of diet-induced insulin-resistant mice. J Clin Invest 118(2):789–800
pubmed: 18188455
pmcid: 2176186
Hoeks J et al (2011) High fat diet-induced changes in mouse muscle mitochondrial phospholipids do not impair mitochondrial respiration despite insulin resistance. PLoS ONE 6(11):e27274
pubmed: 22140436
pmcid: 3225362
doi: 10.1371/journal.pone.0027274
Kraegen EW, Cooney GJ, Turner N (2008) Muscle insulin resistance: a case of fat overconsumption, not mitochondrial dysfunction. Proc Natl Acad Sci USA 105(22):7627–7628
pubmed: 18509057
doi: 10.1073/pnas.0803901105
Laurens C et al (2016) Perilipin 5 fine-tunes lipid oxidation to metabolic demand and protects against lipotoxicity in skeletal muscle. Sci Rep 6:38310
pubmed: 27922115
pmcid: 5138838
doi: 10.1038/srep38310
Mason RR et al (2014) PLIN5 deletion remodels intracellular lipid composition and causes insulin resistance in muscle. Mol Metab 3(6):652–663
pubmed: 25161888
pmcid: 4142393
doi: 10.1016/j.molmet.2014.06.002
Li X et al (2013) Targeting mitochondrial reactive oxygen species as novel therapy for inflammatory diseases and cancers. J Hematol Oncol 6(1):19
pubmed: 23442817
pmcid: 3599349
doi: 10.1186/1756-8722-6-19
Simoneau J-a et al (1999) Markers of capacity to utilize fatty acids in human skeletal muscle: relation to insulin resistance and obesity and effects of weight loss. FASEB J 13(14):2051–2060
pubmed: 10544188
doi: 10.1096/fasebj.13.14.2051
Lee K-U et al (2005) Effects of recombinant adenovirus-mediated uncoupling protein 2 overexpression on endothelial function and apoptosis. Circ Res 96(11):1200–1207
pubmed: 15905464
doi: 10.1161/01.RES.0000170075.73039.5b
Clapham JC et al (2000) Mice overexpressing human uncoupling protein-3 in skeletal muscle are hyperphagic and lean. Nature 406(6794):415
pubmed: 10935638
doi: 10.1038/35019082
Hulver MW et al (2003) Skeletal muscle lipid metabolism with obesity. Am J Physiol Endocrinol Metab 284(4):E741–E747
pubmed: 12626325
doi: 10.1152/ajpendo.00514.2002
Kelley DE et al (2002) Dysfunction of mitochondria in human skeletal muscle in type 2 diabetes. Diabetes 51(10):2944–2950
pubmed: 12351431
doi: 10.2337/diabetes.51.10.2944
Kim J-Y et al (2000) Lipid oxidation is reduced in obese human skeletal muscle. Am J Physiol Endocrinol Metab 279(5):E1039–E1044
pubmed: 11052958
doi: 10.1152/ajpendo.2000.279.5.E1039
Noland RC et al (2003) Acute endurance exercise increases skeletal muscle uncoupling protein-3 gene expression in untrained but not trained humans. Metabolism 52(2):152–158
pubmed: 12601624
doi: 10.1053/meta.2003.50021
Simoneau J et al (1995) Skeletal muscle glycolytic and oxidative enzyme capacities are determinants of insulin sensitivity and muscle composition in obese women. FASEB J 9(2):273–278
pubmed: 7781930
doi: 10.1096/fasebj.9.2.7781930
Roden M (2005) Muscle triglycerides and mitochondrial function: possible mechanisms for the development of type 2 diabetes. Int J Obes 29(S2):S111
doi: 10.1038/sj.ijo.0803102
Petersen KF et al (2003) Mitochondrial dysfunction in the elderly: possible role in insulin resistance. Science 300(5622):1140–1142
pubmed: 3004429
pmcid: 3004429
doi: 10.1126/science.1082889
Hancock CR et al (2008) High-fat diets cause insulin resistance despite an increase in muscle mitochondria. Proc Natl Acad Sci USA 105(22):7815–7820
pubmed: 18509063
doi: 10.1073/pnas.0802057105
Koves TR et al (2005) Peroxisome proliferator-activated receptor-γ co-activator 1α-mediated metabolic remodeling of skeletal myocytes mimics exercise training and reverses lipid-induced mitochondrial inefficiency. J Biol Chem 280(39):33588–33598
pubmed: 16079133
doi: 10.1074/jbc.M507621200
Koves TR et al (2008) Mitochondrial overload and incomplete fatty acid oxidation contribute to skeletal muscle insulin resistance. Cell Metab 7(1):45–56
pubmed: 18177724
doi: 10.1016/j.cmet.2007.10.013
Desvergne B et al (1998) The peroxisome proliferator-activated receptors at the cross-road of diet and hormonal signalling1. J Steroid Biochem Mol Biol 65(1–6):65–74
pubmed: 9699859
doi: 10.1016/S0960-0760(97)00182-9
Coll T et al (2010) Activation of peroxisome proliferator-activated receptor-δ by GW501516 prevents fatty acid-induced nuclear factor-κB activation and insulin resistance in skeletal muscle cells. Endocrinology 151(4):1560–1569
pubmed: 20185762
doi: 10.1210/en.2009-1211
Guetre-Millo M, Gervois P, Raspe E (2000) Peroxisome proliferatoractivated receptor a activators improve insulin sensitivity and reduce adrposity. J Biol Chem 275(16):638–642
Alvim RO et al (2015) General aspects of muscle glucose uptake. An Acad Bras Ciênc 87(1):351–368
pubmed: 25761221
doi: 10.1590/0001-3765201520140225
Katz A (2007) Modulation of glucose transport in skeletal muscle by reactive oxygen species. J Appl Physiol 102(4):1671–1676
pubmed: 17082366
doi: 10.1152/japplphysiol.01066.2006
Hoeks J et al (2010) Prolonged fasting identifies skeletal muscle mitochondrial dysfunction as consequence rather than cause of human insulin resistance. Diabetes 59(9):2117–2125
pubmed: 20573749
pmcid: 2927932
doi: 10.2337/db10-0519
Westermann B (2012) Bioenergetic role of mitochondrial fusion and fission. Biochim Biophys Acta BBA 1817(10):1833–1838
pubmed: 22409868
doi: 10.1016/j.bbabio.2012.02.033
Chan DC (2006) Mitochondrial fusion and fission in mammals. Annu Rev Cell Dev Biol 22:79–99
pubmed: 16704336
doi: 10.1146/annurev.cellbio.22.010305.104638
Suen D-F, Norris KL, Youle RJ (2008) Mitochondrial dynamics and apoptosis. Genes Dev 22(12):1577–1590
pubmed: 18559474
pmcid: 2732420
doi: 10.1101/gad.1658508
Detmer SA, Chan DC (2007) Functions and dysfunctions of mitochondrial dynamics. Nat Rev Mol Cell Biol 8(11):870
pubmed: 17928812
doi: 10.1038/nrm2275
Jheng H-F et al (2012) Mitochondrial fission contributes to mitochondrial dysfunction and insulin resistance in skeletal muscle. Mol Cell Biol 32(2):309–319
pubmed: 22083962
pmcid: 3255771
doi: 10.1128/MCB.05603-11
Liu R et al (2014) Impaired mitochondrial dynamics and bioenergetics in diabetic skeletal muscle. PLoS ONE 9(3):e92810
pubmed: 24658162
pmcid: 3962456
doi: 10.1371/journal.pone.0092810
Handschin C, Spiegelman BM (2006) Peroxisome proliferator-activated receptor γ coactivator 1 coactivators, energy homeostasis, and metabolism. Endocr Rev 27(7):728–735
pubmed: 17018837
doi: 10.1210/er.2006-0037
Puigserver P et al (1998) A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell 92(6):829–839
pubmed: 9529258
doi: 10.1016/S0092-8674(00)81410-5
Kirkwood TB (2005) Understanding the odd science of aging. Cell 120(4):437–447
pubmed: 15734677
doi: 10.1016/j.cell.2005.01.027
pmcid: 15734677
McCarroll SA et al (2004) Comparing genomic expression patterns across species identifies shared transcriptional profile in aging. Nat Genet 36(2):197
pubmed: 14730301
doi: 10.1038/ng1291
Evans JL et al (2003) Are oxidative stress—activated signaling pathways mediators of insulin resistance and β-cell dysfunction? Diabetes 52(1):1–8
pubmed: 12502486
doi: 10.2337/diabetes.52.1.1
Chance B, Williams G (1956) The respiratory chain and oxidative phosphorylation. Adv Enzymol Relat Areas Mol Biol 17:65–134
Affourtit C (2016) Mitochondrial involvement in skeletal muscle insulin resistance: a case of imbalanced bioenergetics. Biochim Biophys Acta BBA 1857(10):1678–1693
pubmed: 27473535
doi: 10.1016/j.bbabio.2016.07.008
Anderson EJ et al (2009) Mitochondrial H
pubmed: 19188683
pmcid: 2648700
doi: 10.1172/JCI37048
Di Meo S, Iossa S, Venditti P (2017) Skeletal muscle insulin resistance: role of mitochondria and other ROS sources. J Endocrinol 233(1):R15–R42
pubmed: 28232636
doi: 10.1530/JOE-16-0598
Anderson EJ, Yamazaki H, Neufer PD (2007) Induction of endogenous UCP3 suppresses mitochondrial oxidant emission during fatty-acid supported respiration. J Biol Chem 282(43):31257–31266
pubmed: 17761668
doi: 10.1074/jbc.M706129200
pmcid: 17761668
Seifert EL et al (2010) Electron transport chain-dependent and-independent mechanisms of mitochondrial H
pubmed: 20032466
doi: 10.1074/jbc.M109.026203
Chen L et al (2008) Reduction of mitochondrial H
pubmed: 18778410
pmcid: 4431549
doi: 10.1111/j.1474-9726.2008.00432.x
Strachan MW (2003) Insulin and cognitive function. Lancet 362(9392):1253
pubmed: 14575966
doi: 10.1016/S0140-6736(03)14615-6
Lautamäki R et al (2006) Insulin improves myocardial blood flow in patients with type 2 diabetes and coronary artery disease. Diabetes 55(2):511–516
pubmed: 16443788
doi: 10.2337/diabetes.55.02.06.db05-1023