Cytosolic lipid excess-induced mitochondrial dysfunction is the cause or effect of high fat diet-induced skeletal muscle insulin resistance: a molecular insight.


Journal

Molecular biology reports
ISSN: 1573-4978
Titre abrégé: Mol Biol Rep
Pays: Netherlands
ID NLM: 0403234

Informations de publication

Date de publication:
Feb 2019
Historique:
received: 21 05 2018
accepted: 30 11 2018
pubmed: 12 12 2018
medline: 11 7 2019
entrez: 12 12 2018
Statut: ppublish

Résumé

Mitochondria play a central role in the energy homeostasis in eukaryotic cells by generating ATP via oxidative metabolism of nutrients. Excess lipid accumulation and impairments in mitochondrial function have been considered as putative mechanisms for the pathogenesis of skeletal muscle insulin resistance. Accumulation of lipids in tissues occurs due to either excessive fatty acid uptake, decreased fatty acid utilization or both. Consequently, elevated levels cytosolic lipid metabolites, triglycerides, diacylglycerol and ceramides have been demonstrated to adversely affect glucose homeostasis. Several recent studies indicate that reduced insulin-stimulated ATP synthesis and reduced expression of mitochondrial enzymes and PPAR-γ coactivator, in high fat feeding (lipid overload) are associated with insulin resistance. Despite the fact, few notable studies suggest mitochondrial dysfunction is prevalent in type 2 diabetes mellitus; it is still not clear whether the defects in mitochondrial function are the cause of insulin resistance or the consequential effects of insulin resistance itself. Thus, there is a growing interest in understanding the intricacies of mitochondrial function and its association with cytosolic lipid excess. This review therefore critically examines the molecular cascades linking cytosolic lipid excess and mitochondrial dysfunction in the pathogenesis of high fat diet-induced insulin resistance in skeletal muscle. The sequential processes following the excess intake of high fat diet in skeletal muscle includes, accumulation of cytosolic fatty acids, increased production of reactive oxygen species, mutations and ageing, and decreased mitochondrial biogenesis. The consequent mitochondrial dysfunction is then leading to decreased β-oxidation, respiratory functions and glycolysis and increased glucolipotoxicity. These events collectively induce the insulin resistance in skeletal muscle.

Identifiants

pubmed: 30535784
doi: 10.1007/s11033-018-4551-7
pii: 10.1007/s11033-018-4551-7
doi:

Substances chimiques

Lipids 0

Types de publication

Journal Article Review

Langues

eng

Sous-ensembles de citation

IM

Pagination

957-963

Références

Corpeleijn E, Saris WH, Blaak EE (2009) Metabolic flexibility in the development of insulin resistance and type 2 diabetes: effects of lifestyle. Obes Rev 10(2):178–193
pubmed: 19207879 doi: 10.1111/j.1467-789X.2008.00544.x
Lark D, Fisher-Wellman K, Neufer P (2012) High-fat load: mechanism (s) of insulin resistance in skeletal muscle. Int J Obes Suppl 2:S31–S36
pubmed: 26052434 pmcid: 4457392 doi: 10.1038/ijosup.2012.20
Krebs M, Roden M (2004) Nutrient-induced insulin resistance in human skeletal muscle. Curr Med Chem 11(7):901–908
pubmed: 15078172 doi: 10.2174/0929867043455620
Holland WL, Summers SA (2008) Sphingolipids, insulin resistance, and metabolic disease: new insights from in vivo manipulation of sphingolipid metabolism. Endocr Rev 29(4):381–402
pubmed: 18451260 pmcid: 2528849 doi: 10.1210/er.2007-0025
Perseghin G et al (1999) Intramyocellular triglyceride content is a determinant of in vivo insulin resistance in humans: a 1H-13C nuclear magnetic resonance spectroscopy assessment in offspring of type 2 diabetic parents. Diabetes 48(8):1600–1606
pubmed: 10426379 doi: 10.2337/diabetes.48.8.1600
Brehm A et al (2006) Increased lipid availability impairs insulin-stimulated ATP synthesis in human skeletal muscle. Diabetes 55(1):136–140
pubmed: 16380486 doi: 10.2337/diabetes.55.01.06.db05-1286
Befroy DE et al (2007) Impaired mitochondrial substrate oxidation in muscle of insulin-resistant offspring of type 2 diabetic patients. Diabetes 56(5):1376–1381
pubmed: 17287462 pmcid: 2995532 doi: 10.2337/db06-0783
Krssak M et al (1999) Intramyocellular lipid concentrations are correlated with insulin sensitivity in humans: a 1H NMR spectroscopy study. Diabetologia 42(1):113–116
pubmed: 10027589 doi: 10.1007/s001250051123
Mogensen M et al (2007) Mitochondrial respiration is decreased in skeletal muscle of patients with type 2 diabetes. Diabetes 56(6):1592–1599
pubmed: 17351150 doi: 10.2337/db06-0981
Ashrafian H, Frenneaux MP, Opie LH (2007) Metabolic mechanisms in heart failure. Circulation 116(4):434–448
pubmed: 17646594 doi: 10.1161/CIRCULATIONAHA.107.702795
Ren J et al (2010) Mitochondrial biogenesis in the metabolic syndrome and cardiovascular disease. J Mol Med 88(10):993–1001
pubmed: 20725711 pmcid: 4319704 doi: 10.1007/s00109-010-0663-9
Wiederkehr A, Wollheim CB (2006) Minireview: implication of mitochondria in insulin secretion and action. Endocrinology 147(6):2643–2649
pubmed: 16556766 doi: 10.1210/en.2006-0057
Brownlee M, The pathobiology of diabetic complications: a unifying mechanism. diabetes, 2005. 54(6): p. 1615–1625
Holloszy JO (2013) “Deficiency” of mitochondria in muscle does not cause insulin resistance. Diabetes 62(4):1036–1040
pubmed: 23520283 pmcid: 3609559 doi: 10.2337/db12-1107
Liesa M, Shirihai OS (2013) Mitochondrial dynamics in the regulation of nutrient utilization and energy expenditure. Cell Metab 17(4):491–506
pubmed: 23562075 pmcid: 5967396 doi: 10.1016/j.cmet.2013.03.002
Simoneau J-A, Kelley DE (1997) Altered glycolytic and oxidative capacities of skeletal muscle contribute to insulin resistance in NIDDM. J Appl Physiol 83(1):166–171
pubmed: 9216960 doi: 10.1152/jappl.1997.83.1.166
Petersen KF et al (2004) Impaired mitochondrial activity in the insulin-resistant offspring of patients with type 2 diabetes. N Engl J Med 350(7):664–671
pubmed: 14960743 pmcid: 2995502 doi: 10.1056/NEJMoa031314
Fisher-Wellman KH, Neufer PD (2012) Linking mitochondrial bioenergetics to insulin resistance via redox biology. Trends Endocrinol Metab 23(3):142–153
pubmed: 22305519 pmcid: 3313496 doi: 10.1016/j.tem.2011.12.008
Muoio DM, Neufer PD (2012) Lipid-induced mitochondrial stress and insulin action in muscle. Cell Metab 15(5):595–605
pubmed: 22560212 pmcid: 3348508 doi: 10.1016/j.cmet.2012.04.010
Hegarty B et al (2003) The role of intramuscular lipid in insulin resistance. Acta Physiol 178(4):373–383
doi: 10.1046/j.1365-201X.2003.01162.x
Lowell BB, Shulman GI (2005) Mitochondrial dysfunction and type 2 diabetes. Science 307(5708):384–387
pubmed: 15662004 doi: 10.1126/science.1104343 pmcid: 15662004
Montgomery MK, Turner N (2015) Mitochondrial dysfunction and insulin resistance: an update. Endocr Connect 4(1):R1–R15
pubmed: 25385852 doi: 10.1530/EC-14-0092
Frankenfield DC, Muth ER, Rowe WA (1998) The Harris-Benedict studies of human basal metabolism: history and limitations. J Am Diet Assoc 98(4):439–445
pubmed: 9550168 doi: 10.1016/S0002-8223(98)00100-X
Garland P, Newsholme E, Randle P (1962) Effect of fatty acids, ketone bodies, diabetes and starvation on pyruvate metabolism in rat heart and diaphragm muscle. Nature 195(4839):381
pubmed: 13896984 doi: 10.1038/195381a0
Randle P et al (1963) The glucose fatty-acid cycle its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus. Lancet 281(7285):785–789
doi: 10.1016/S0140-6736(63)91500-9
Sugden MC, Holness MJ (2006) Mechanisms underlying regulation of the expression and activities of the mammalian pyruvate dehydrogenase kinases. Arch Physiol Biochem 112(3):139–149
pubmed: 17132539 doi: 10.1080/13813450600935263
Shulman GI (2000) Cellular mechanisms of insulin resistance. J Clin Invest 106(2):171–176
pubmed: 10903330 pmcid: 314317 doi: 10.1172/JCI10583
Erion DM, Shulman GI (2010) Diacylglycerol-mediated insulin resistance. Nat Med 16(4):400
pubmed: 20376053 pmcid: 3730126 doi: 10.1038/nm0410-400
Ritov VB et al (2005) Deficiency of subsarcolemmal mitochondria in obesity and type 2 diabetes. Diabetes 54(1):8–14
pubmed: 15616005 doi: 10.2337/diabetes.54.1.8
Petersen KF, Dufour S, Shulman GI (2005) Decreased insulin-stimulated ATP synthesis and phosphate transport in muscle of insulin-resistant offspring of type 2 diabetic parents. PLoS Med 2(9):e233
pubmed: 16089501 pmcid: 1184227 doi: 10.1371/journal.pmed.0020233
Sparks LM et al (2005) A high-fat diet coordinately downregulates genes required for mitochondrial oxidative phosphorylation in skeletal muscle. Diabetes 54(7):1926–1933
pubmed: 15983191 doi: 10.2337/diabetes.54.7.1926
Lionetti L et al (2007) Skeletal muscle subsarcolemmal mitochondrial dysfunction in high-fat fed rats exhibiting impaired glucose homeostasis. Int J Obes 31(10):1596
doi: 10.1038/sj.ijo.0803636
Muoio DM (2010) Intramuscular triacylglycerol and insulin resistance: guilty as charged or wrongly accused? Biochim Biophys Acta BBA 1801(3):281–288
pubmed: 19958841 doi: 10.1016/j.bbalip.2009.11.007
Bonnard C et al (2008) Mitochondrial dysfunction results from oxidative stress in the skeletal muscle of diet-induced insulin-resistant mice. J Clin Invest 118(2):789–800
pubmed: 18188455 pmcid: 2176186
Hoeks J et al (2011) High fat diet-induced changes in mouse muscle mitochondrial phospholipids do not impair mitochondrial respiration despite insulin resistance. PLoS ONE 6(11):e27274
pubmed: 22140436 pmcid: 3225362 doi: 10.1371/journal.pone.0027274
Kraegen EW, Cooney GJ, Turner N (2008) Muscle insulin resistance: a case of fat overconsumption, not mitochondrial dysfunction. Proc Natl Acad Sci USA 105(22):7627–7628
pubmed: 18509057 doi: 10.1073/pnas.0803901105
Laurens C et al (2016) Perilipin 5 fine-tunes lipid oxidation to metabolic demand and protects against lipotoxicity in skeletal muscle. Sci Rep 6:38310
pubmed: 27922115 pmcid: 5138838 doi: 10.1038/srep38310
Mason RR et al (2014) PLIN5 deletion remodels intracellular lipid composition and causes insulin resistance in muscle. Mol Metab 3(6):652–663
pubmed: 25161888 pmcid: 4142393 doi: 10.1016/j.molmet.2014.06.002
Li X et al (2013) Targeting mitochondrial reactive oxygen species as novel therapy for inflammatory diseases and cancers. J Hematol Oncol 6(1):19
pubmed: 23442817 pmcid: 3599349 doi: 10.1186/1756-8722-6-19
Simoneau J-a et al (1999) Markers of capacity to utilize fatty acids in human skeletal muscle: relation to insulin resistance and obesity and effects of weight loss. FASEB J 13(14):2051–2060
pubmed: 10544188 doi: 10.1096/fasebj.13.14.2051
Lee K-U et al (2005) Effects of recombinant adenovirus-mediated uncoupling protein 2 overexpression on endothelial function and apoptosis. Circ Res 96(11):1200–1207
pubmed: 15905464 doi: 10.1161/01.RES.0000170075.73039.5b
Clapham JC et al (2000) Mice overexpressing human uncoupling protein-3 in skeletal muscle are hyperphagic and lean. Nature 406(6794):415
pubmed: 10935638 doi: 10.1038/35019082
Hulver MW et al (2003) Skeletal muscle lipid metabolism with obesity. Am J Physiol Endocrinol Metab 284(4):E741–E747
pubmed: 12626325 doi: 10.1152/ajpendo.00514.2002
Kelley DE et al (2002) Dysfunction of mitochondria in human skeletal muscle in type 2 diabetes. Diabetes 51(10):2944–2950
pubmed: 12351431 doi: 10.2337/diabetes.51.10.2944
Kim J-Y et al (2000) Lipid oxidation is reduced in obese human skeletal muscle. Am J Physiol Endocrinol Metab 279(5):E1039–E1044
pubmed: 11052958 doi: 10.1152/ajpendo.2000.279.5.E1039
Noland RC et al (2003) Acute endurance exercise increases skeletal muscle uncoupling protein-3 gene expression in untrained but not trained humans. Metabolism 52(2):152–158
pubmed: 12601624 doi: 10.1053/meta.2003.50021
Simoneau J et al (1995) Skeletal muscle glycolytic and oxidative enzyme capacities are determinants of insulin sensitivity and muscle composition in obese women. FASEB J 9(2):273–278
pubmed: 7781930 doi: 10.1096/fasebj.9.2.7781930
Roden M (2005) Muscle triglycerides and mitochondrial function: possible mechanisms for the development of type 2 diabetes. Int J Obes 29(S2):S111
doi: 10.1038/sj.ijo.0803102
Petersen KF et al (2003) Mitochondrial dysfunction in the elderly: possible role in insulin resistance. Science 300(5622):1140–1142
pubmed: 3004429 pmcid: 3004429 doi: 10.1126/science.1082889
Hancock CR et al (2008) High-fat diets cause insulin resistance despite an increase in muscle mitochondria. Proc Natl Acad Sci USA 105(22):7815–7820
pubmed: 18509063 doi: 10.1073/pnas.0802057105
Koves TR et al (2005) Peroxisome proliferator-activated receptor-γ co-activator 1α-mediated metabolic remodeling of skeletal myocytes mimics exercise training and reverses lipid-induced mitochondrial inefficiency. J Biol Chem 280(39):33588–33598
pubmed: 16079133 doi: 10.1074/jbc.M507621200
Koves TR et al (2008) Mitochondrial overload and incomplete fatty acid oxidation contribute to skeletal muscle insulin resistance. Cell Metab 7(1):45–56
pubmed: 18177724 doi: 10.1016/j.cmet.2007.10.013
Desvergne B et al (1998) The peroxisome proliferator-activated receptors at the cross-road of diet and hormonal signalling1. J Steroid Biochem Mol Biol 65(1–6):65–74
pubmed: 9699859 doi: 10.1016/S0960-0760(97)00182-9
Coll T et al (2010) Activation of peroxisome proliferator-activated receptor-δ by GW501516 prevents fatty acid-induced nuclear factor-κB activation and insulin resistance in skeletal muscle cells. Endocrinology 151(4):1560–1569
pubmed: 20185762 doi: 10.1210/en.2009-1211
Guetre-Millo M, Gervois P, Raspe E (2000) Peroxisome proliferatoractivated receptor a activators improve insulin sensitivity and reduce adrposity. J Biol Chem 275(16):638–642
Alvim RO et al (2015) General aspects of muscle glucose uptake. An Acad Bras Ciênc 87(1):351–368
pubmed: 25761221 doi: 10.1590/0001-3765201520140225
Katz A (2007) Modulation of glucose transport in skeletal muscle by reactive oxygen species. J Appl Physiol 102(4):1671–1676
pubmed: 17082366 doi: 10.1152/japplphysiol.01066.2006
Hoeks J et al (2010) Prolonged fasting identifies skeletal muscle mitochondrial dysfunction as consequence rather than cause of human insulin resistance. Diabetes 59(9):2117–2125
pubmed: 20573749 pmcid: 2927932 doi: 10.2337/db10-0519
Westermann B (2012) Bioenergetic role of mitochondrial fusion and fission. Biochim Biophys Acta BBA 1817(10):1833–1838
pubmed: 22409868 doi: 10.1016/j.bbabio.2012.02.033
Chan DC (2006) Mitochondrial fusion and fission in mammals. Annu Rev Cell Dev Biol 22:79–99
pubmed: 16704336 doi: 10.1146/annurev.cellbio.22.010305.104638
Suen D-F, Norris KL, Youle RJ (2008) Mitochondrial dynamics and apoptosis. Genes Dev 22(12):1577–1590
pubmed: 18559474 pmcid: 2732420 doi: 10.1101/gad.1658508
Detmer SA, Chan DC (2007) Functions and dysfunctions of mitochondrial dynamics. Nat Rev Mol Cell Biol 8(11):870
pubmed: 17928812 doi: 10.1038/nrm2275
Jheng H-F et al (2012) Mitochondrial fission contributes to mitochondrial dysfunction and insulin resistance in skeletal muscle. Mol Cell Biol 32(2):309–319
pubmed: 22083962 pmcid: 3255771 doi: 10.1128/MCB.05603-11
Liu R et al (2014) Impaired mitochondrial dynamics and bioenergetics in diabetic skeletal muscle. PLoS ONE 9(3):e92810
pubmed: 24658162 pmcid: 3962456 doi: 10.1371/journal.pone.0092810
Handschin C, Spiegelman BM (2006) Peroxisome proliferator-activated receptor γ coactivator 1 coactivators, energy homeostasis, and metabolism. Endocr Rev 27(7):728–735
pubmed: 17018837 doi: 10.1210/er.2006-0037
Puigserver P et al (1998) A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell 92(6):829–839
pubmed: 9529258 doi: 10.1016/S0092-8674(00)81410-5
Kirkwood TB (2005) Understanding the odd science of aging. Cell 120(4):437–447
pubmed: 15734677 doi: 10.1016/j.cell.2005.01.027 pmcid: 15734677
McCarroll SA et al (2004) Comparing genomic expression patterns across species identifies shared transcriptional profile in aging. Nat Genet 36(2):197
pubmed: 14730301 doi: 10.1038/ng1291
Evans JL et al (2003) Are oxidative stress—activated signaling pathways mediators of insulin resistance and β-cell dysfunction? Diabetes 52(1):1–8
pubmed: 12502486 doi: 10.2337/diabetes.52.1.1
Chance B, Williams G (1956) The respiratory chain and oxidative phosphorylation. Adv Enzymol Relat Areas Mol Biol 17:65–134
Affourtit C (2016) Mitochondrial involvement in skeletal muscle insulin resistance: a case of imbalanced bioenergetics. Biochim Biophys Acta BBA 1857(10):1678–1693
pubmed: 27473535 doi: 10.1016/j.bbabio.2016.07.008
Anderson EJ et al (2009) Mitochondrial H
pubmed: 19188683 pmcid: 2648700 doi: 10.1172/JCI37048
Di Meo S, Iossa S, Venditti P (2017) Skeletal muscle insulin resistance: role of mitochondria and other ROS sources. J Endocrinol 233(1):R15–R42
pubmed: 28232636 doi: 10.1530/JOE-16-0598
Anderson EJ, Yamazaki H, Neufer PD (2007) Induction of endogenous UCP3 suppresses mitochondrial oxidant emission during fatty-acid supported respiration. J Biol Chem 282(43):31257–31266
pubmed: 17761668 doi: 10.1074/jbc.M706129200 pmcid: 17761668
Seifert EL et al (2010) Electron transport chain-dependent and-independent mechanisms of mitochondrial H
pubmed: 20032466 doi: 10.1074/jbc.M109.026203
Chen L et al (2008) Reduction of mitochondrial H
pubmed: 18778410 pmcid: 4431549 doi: 10.1111/j.1474-9726.2008.00432.x
Strachan MW (2003) Insulin and cognitive function. Lancet 362(9392):1253
pubmed: 14575966 doi: 10.1016/S0140-6736(03)14615-6
Lautamäki R et al (2006) Insulin improves myocardial blood flow in patients with type 2 diabetes and coronary artery disease. Diabetes 55(2):511–516
pubmed: 16443788 doi: 10.2337/diabetes.55.02.06.db05-1023

Auteurs

Baishali Alok Jana (BA)

Department of Pharmaceutical Biotechnology, JSS College of Pharmacy (A Constituent College of JSS Academy of Higher Education & Research, Mysuru, Karnataka, India), Ootacamund, Tamil Nadu, 643001, India.

Pavan Kumar Chintamaneni (PK)

Department of Pharmacology, JSS College of Pharmacy (A Constituent College of JSS Academy of Higher Education & Research, Mysuru, Karnataka, India), Ootacamund, Tamil Nadu, 643001, India.

Praveen Thaggikuppe Krishnamurthy (PT)

Department of Pharmacology, JSS College of Pharmacy (A Constituent College of JSS Academy of Higher Education & Research, Mysuru, Karnataka, India), Ootacamund, Tamil Nadu, 643001, India.

Ashish Wadhwani (A)

Department of Pharmaceutical Biotechnology, JSS College of Pharmacy (A Constituent College of JSS Academy of Higher Education & Research, Mysuru, Karnataka, India), Ootacamund, Tamil Nadu, 643001, India.

Suresh Kumar Mohankumar (SK)

Department of Pharmacognosy & Phytopharmacy, TIFAC CORE in Herbal Drugs, JSS College of Pharmacy (A Constituent College of JSS Academy of Higher Education & Research, Mysuru, Karnataka, India), P.B. 20, Rocklands, Ootacamund, Tamil Nadu, 643001, India. suresh.jsscpo@jssuni.edu.in.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH