N-Acetylcysteine protects against intrauterine growth retardation-induced intestinal injury via restoring redox status and mitochondrial function in neonatal piglets.
Intestinal damage
Intrauterine growth retardation
Mitochondrial function
N-Acetylcysteine
Piglet
Redox status
Journal
European journal of nutrition
ISSN: 1436-6215
Titre abrégé: Eur J Nutr
Pays: Germany
ID NLM: 100888704
Informations de publication
Date de publication:
Dec 2019
Dec 2019
Historique:
received:
14
08
2018
accepted:
03
12
2018
pubmed:
12
12
2018
medline:
28
4
2020
entrez:
12
12
2018
Statut:
ppublish
Résumé
Intrauterine growth retardation (IUGR) is detrimental to the intestinal development of neonates, yet satisfactory treatment strategies remain limited. This study was, therefore, conducted using neonatal piglets as a model to investigate the potential of N-acetylcysteine (NAC) to alleviate intestinal damage caused by IUGR. Seven normal birth weight (NBW) and fourteen IUGR neonatal male piglets were selected and then fed a basal milk diet (NBW-CON and IUGR-CON groups) or a basal milk diet supplemented with 1.2 g NAC per kg of diet (IUGR-NAC group) from 7 to 21 days of age (n = 7). Parameters associated with the severity of intestinal injury, villus morphology and ultrastructural structure, redox status, and mitochondrial function were analyzed. Compared with the NBW-CON piglets, the IUGR-CON piglets exhibited decreased villus height and greater numbers of apoptotic cells in jejunum, along with the increases in malondialdehyde and protein carbonyl concentrations and a decreased adenosine triphosphate (ATP) content. Treatment with NAC significantly increased jejunal superoxide dismutase activity, reduced glutathione: oxidized glutathione ratio, and the mRNA abundance of nuclear respiratory factor 2, heme oxygenase 1, and superoxide dismutase 2 in the IUGR-NAC piglets compared with the IUGR-CON piglets. In addition, NAC improved the efficiency of mitochondrial oxidative metabolism and ATP generation, ameliorated mitochondrial swelling, and inhibited the overproduction of mitochondrial superoxide anion in the jejunal mucosa. Dietary supplementation of NAC shows promise for attenuating the early intestinal injury of young piglets with IUGR, probably through its antioxidant action to restore redox status and mitochondrial function.
Identifiants
pubmed: 30535793
doi: 10.1007/s00394-018-1878-8
pii: 10.1007/s00394-018-1878-8
doi:
Substances chimiques
DNA, Mitochondrial
0
Acetylcysteine
WYQ7N0BPYC
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
3335-3347Subventions
Organisme : National Natural Science Foundation of China
ID : 31772634
Organisme : National Natural Science Foundation of China
ID : 31802094
Organisme : Postdoctoral Research Foundation of China (CN)
ID : 2018M632320
Organisme : Open Project of Shanghai Key Laboratory of Veterinary Biotechnology
ID : klab201710
Organisme : Natural Science Foundation of Jiangsu Province
ID : BK20180531
Références
Hales CN, Barker DJ (2001) The thrifty phenotype hypothesis. Br Med Bull 60:5–20. https://doi.org/10.1093/bmb/60.1.5
doi: 10.1093/bmb/60.1.5
pubmed: 11809615
pmcid: 11809615
Mandò C, Tabano S, Colapietro P et al (2011) Transferrin receptor gene and protein expression and localization in human IUGR and normal term placentas. Placenta 32:44–50. https://doi.org/10.1016/j.placenta.2010.10.009
doi: 10.1016/j.placenta.2010.10.009
pubmed: 21036394
Norberg S, Powell TL, Jansson T (1998) Intrauterine growth restriction is associated with a reduced activity of placental taurine transporters. Pediatr Res 44:233–238. https://doi.org/10.1203/00006450-199808000-00016
doi: 10.1203/00006450-199808000-00016
pubmed: 9702920
Zadrożna M, Gawlik M, Nowak B et al (2009) Antioxidants activities and concentration of selenium, zinc and copper in preterm and IUGR human placentas. J Trace Elem Med Bio 23:144–148. https://doi.org/10.1016/j.jtemb.2009.02.005
doi: 10.1016/j.jtemb.2009.02.005
Yung H, Calabrese S, Hynx D et al (2008) Evidence of placental translation inhibition and endoplasmic reticulum stress in the etiology of human intrauterine growth restriction. Am J Pathol 173:451–462. https://doi.org/10.2353/ajpath.2008.071193
doi: 10.2353/ajpath.2008.071193
pubmed: 18583310
pmcid: 2475782
Burton GJ, Yung HW, Cindrova-Davies T et al (2009) Placental endoplasmic reticulum stress and oxidative stress in the pathophysiology of unexplained intrauterine growth restriction and early onset preeclampsia. Placenta 30:43–48. https://doi.org/10.1016/j.placenta.2008.11.003
doi: 10.1016/j.placenta.2008.11.003
pmcid: 2684656
Yung H, Hemberger M, Watson ED et al (2012) Endoplasmic reticulum stress disrupts placental morphogenesis: implications for human intrauterine growth restriction. Pathology 228:554–564. https://doi.org/10.1002/path.4068
doi: 10.1002/path.4068
Wang J, Chen L, Li D et al (2008) Intrauterine growth restriction affects the proteomes of the small intestine, liver, and skeletal muscle in newborn pigs. J Nutr 138:60–66. https://doi.org/10.1093/jn/138.1.60
doi: 10.1093/jn/138.1.60
D’Inca R, Gras-Le Guen C, Che L et al (2011) Intrauterine growth restriction delays feeding-induced gut adaptation in term newborn pigs. Neonatology 99:208–216. https://doi.org/10.1159/000314919
doi: 10.1159/000314919
pubmed: 20881437
Wang W, Degroote J, Van Ginneken C et al (2016) Intrauterine growth restriction in neonatal piglets affects small intestinal mucosal permeability and mRNA expression of redox-sensitive genes. FASEB J 30:863–873. https://doi.org/10.1096/fj.15-274779
doi: 10.1096/fj.15-274779
pubmed: 26514167
Bernstein IM, Horbar JD, Badger GJ et al (2000) Morbidity and mortality among very-low-birth-weight neonates with intrauterine growth restriction. The Vermont Oxford Network. Am J Obstet Gynecol 182:198–206. https://doi.org/10.1016/S0002-9378(00)70513-8
doi: 10.1016/S0002-9378(00)70513-8
pubmed: 10649179
Manogura AC, Turan O, Kush ML et al (2008) Predictors of necrotizing enterocolitis in preterm growth-restricted neonates. Am J Obstet Gynecol 198:638.e1–638.e5. https://doi.org/10.1016/j.ajog.2007.11.048
doi: 10.1016/j.ajog.2007.11.048
Aydemir C, Dilli D, Uras N et al (2011) Total oxidant status and oxidative stress are increased in infants with necrotizing enterocolitis. J Pediatr Surg 46:2096–2100. https://doi.org/10.1016/j.jpedsurg.2011.06.032
doi: 10.1016/j.jpedsurg.2011.06.032
pubmed: 22075338
Kim M, Christley S, Alverdy JC et al (2012) Immature oxidative stress management as a unifying principle in the pathogenesis of necrotizing enterocolitis: insights from an agent-based model. Surg Infect (Larchmt) 13:18–32. https://doi.org/10.1089/sur.2011.057
doi: 10.1089/sur.2011.057
Perrone S, Tataranno ML, Negro S et al (2012) May oxidative stress biomarkers in cord blood predict the occurrence of necrotizing enterocolitis in preterm infants? J Matern Fetal Neonatal Med 25 Suppl 1:128–131. https://doi.org/10.3109/14767058.2012.663197
doi: 10.3109/14767058.2012.663197
Yin J, Ren W, Liu G et al (2013) Birth oxidative stress and the development of an antioxidant system in newborn piglets. Free Radic Res 47:1027–1035. https://doi.org/10.3109/10715762.2013.848277
doi: 10.3109/10715762.2013.848277
pubmed: 24074241
Robles R, Palomino N, Robles A (2001) Oxidative stress in the neonate. Early Hum Dev 65(Suppl 2):75–81. https://doi.org/10.1016/S0378-3782(01)00209-2
doi: 10.1016/S0378-3782(01)00209-2
Friel JK, Friesen RW, Harding SV et al (2004) Evidence of oxidative stress in full-term healthy infants. Pediatr Res 56:878–882. https://doi.org/10.1203/01.PDR.0000146032.98120.43
doi: 10.1203/01.PDR.0000146032.98120.43
pubmed: 15470194
Michiels J, De Vos M, Missotten J et al (2013) Maturation of digestive function is retarded and plasma antioxidant capacity lowered in fully weaned low birth weight piglets. Br J Nutr 109:65–75. https://doi.org/10.1017/S0007114512000670
doi: 10.1017/S0007114512000670
pubmed: 22470197
Zafarullah M, Li WQ, Sylvester J et al (2003) Molecular mechanisms of N-acetylcysteine actions. Cell Mol Life Sci 60:6–20. https://doi.org/10.1007/s000180300001
doi: 10.1007/s000180300001
pubmed: 12613655
Aruoma OI, Halliwell B, Hoey BM et al (1989) The antioxidant action of N-acetylcysteine: its reaction with hydrogen peroxide, hydroxyl radical, superoxide, and hypochlorous acid. Free Radic Biol Med 6:593–597. https://doi.org/10.1016/0891-5849(89)90066-X
doi: 10.1016/0891-5849(89)90066-X
pubmed: 2546864
Liu JQ, Lee TF, Chen C et al (2010) N-acetylcysteine improves hemodynamics and reduces oxidative stress in the brains of newborn piglets with hypoxia-reoxygenation injury. J Neurotraum 27:1865–1873. https://doi.org/10.1089/neu.2010.1325
doi: 10.1089/neu.2010.1325
Zhang H, Su W, Ying Z et al (2018) N-acetylcysteine attenuates intrauterine growth retardation-induced hepatic damage in suckling piglets by improving glutathione synthesis and cellular homeostasis. Eur J Nutr 57:327–338. https://doi.org/10.1007/s00394-016-1322-x
doi: 10.1007/s00394-016-1322-x
pubmed: 27722780
Amrouche-Mekkioui I, Djerdjouri B (2012) N-acetylcysteine improves redox status, mitochondrial dysfunction, mucin-depleted crypts and epithelial hyperplasia in dextran sulfate sodium-induced oxidative colitis in mice. Eur J Pharmacol 691:209–217. https://doi.org/10.1016/j.ejphar.2012.06.014
doi: 10.1016/j.ejphar.2012.06.014
pubmed: 22732651
Yi D, Hou Y, Xiao H et al (2017) N-acetylcysteine improves intestinal function in lipopolysaccharides-challenged piglets through multiple signaling pathways. Amino Acids 49:1915–1929. https://doi.org/10.1007/s00726-017-2389-2
doi: 10.1007/s00726-017-2389-2
pubmed: 28271166
Wang L, Zhou J, Hou Y et al (2017) N-acetylcysteine supplementation alleviates intestinal injury in piglets infected by porcine epidemic diarrhea virus. Amino Acids 49:1931–1943. https://doi.org/10.1007/s00726-017-2397-2
doi: 10.1007/s00726-017-2397-2
pubmed: 28258325
Ciralik H, Bulbuloglu E, Cetinkaya A et al (2006) Effects of N-acetylcysteine on methotrexate-induced small intestinal damage in rats. Mt Sinai J Med 73:1086–1092
pubmed: 17285200
Merrifield CA, Lewis M, Claus SP et al (2011) A metabolic system-wide characterisation of the pig: a model for human physiology. Mol Biosyst 7:2577–2588. https://doi.org/10.1039/c1mb05023k
doi: 10.1039/c1mb05023k
pubmed: 21761043
Wang T, Huo YJ, Shi F et al (2005) Effects of intrauterine growth retardation on development of the gastrointestinal tract in neonatal pigs. Biol Neonate 88:66–72. https://doi.org/10.1159/000084645
doi: 10.1159/000084645
pubmed: 15785017
Zhang H, Li Y, Su W et al (2017) Resveratrol attenuates mitochondrial dysfunction in the liver of intrauterine growth retarded suckling piglets by improving mitochondrial biogenesis and redox status. Mol Nutr Food Res 61:1600653. https://doi.org/10.1002/mnfr.201600653
doi: 10.1002/mnfr.201600653
Hou Y, Wang L, Zhang W et al (2012) Protective effects of N-acetylcysteine on intestinal functions of piglets challenged with lipopolysaccharide. Amino Acids 43:1233–1242. https://doi.org/10.1007/s00726-011-1191-9
doi: 10.1007/s00726-011-1191-9
pubmed: 22180025
Yi D, Hou Y, Wang L et al (2014) Dietary N-acetylcysteine supplementation alleviates liver injury in lipopolysaccharide-challenged piglets. Br J Nutr 111:46–54. https://doi.org/10.1017/S0007114513002171
doi: 10.1017/S0007114513002171
pubmed: 23829996
Han F, Hu L, Xuan Y et al (2013) Effects of high nutrient intake on the growth performance, intestinal morphology and immune function of neonatal intra-uterine growth-retarded pigs. Br J Nutr 110:1819–1827. https://doi.org/10.1017/S0007114513001232
doi: 10.1017/S0007114513001232
pubmed: 23596997
Li Y, Zhang H, Chen Y et al (2015) Bacillus amyloliquefaciens supplementation alleviates immunological stress and intestinal damage in lipopolysaccharide-challenged broilers. Anim Feed Sci Technol 208:119–131. https://doi.org/10.1016/j.anifeedsci.2015.07.001
doi: 10.1016/j.anifeedsci.2015.07.001
Du H, Guo L, Yan S et al (2010) Early deficits in synaptic mitochondria in an Alzheimer’s disease mouse model. Proc Natl Acad Sci USA 107:18670–18675. https://doi.org/10.1073/pnas.1006586107
doi: 10.1073/pnas.1006586107
pubmed: 20937894
Ong MM, Wang AS, Leow KY et al (2006) Nimesulide-induced hepatic mitochondrial injury in heterozygous Sod2(+/-) mice. Free Radic Biol Med 40:420–429. https://doi.org/10.1016/j.freeradbiomed.2005.08.038
doi: 10.1016/j.freeradbiomed.2005.08.038
pubmed: 16443156
Fung CM, White JR, Brown AS et al (2016) Intrauterine growth restriction alters mouse intestinal architecture during development. PLoS One 11:e0146542. https://doi.org/10.1371/journal.pone.0146542
doi: 10.1371/journal.pone.0146542
pubmed: 26745886
pmcid: 4706418
Regev RH, Reichman B (2004) Prematurity and intrauterine growth retardation—double jeopardy? Clin Perinatol 31:453–473. https://doi.org/10.1016/j.clp.2004.04.017
doi: 10.1016/j.clp.2004.04.017
pubmed: 15325532
Luk GD, Bayless TM, Baylin SB (1983) Plasma postheparin diamine oxidase. Sensitive provocative test for quantitating length of acute intestinal mucosal injury in the rat. J Clin Invest 71:1308–1315. https://doi.org/10.1172/JCI110881
doi: 10.1172/JCI110881
pubmed: 6406546
pmcid: 436992
Gnauck A, Lentle RG, Kruger MC (2015) Aspirin-induced increase in intestinal paracellular permeability does not affect the levels of LPS in venous blood of healthy women. Innate Immun 21:537–545. https://doi.org/10.1177/1753425914557101
doi: 10.1177/1753425914557101
pubmed: 25398227
Bhattacharyya A, Chattopadhyay R, Mitra S et al (2014) Oxidative stress: an essential factor in the pathogenesis of gastrointestinal mucosal diseases. Physiol Rev 94:329–354. https://doi.org/10.1152/physrev.00040.2012
doi: 10.1152/physrev.00040.2012
pubmed: 24692350
pmcid: 24692350
Rao RK, Basuroy S, Rao VU et al (2002) Tyrosine phosphorylation and dissociation of occludin-ZO-1 and E-cadherin-beta-catenin complexes from the cytoskeleton by oxidative stress. Biochem J 368:471–481. https://doi.org/10.1042/BJ20011804
doi: 10.1042/BJ20011804
pubmed: 12169098
pmcid: 1222996
Sheth P, Basuroy S, Li C et al (2003) Role of phosphatidylinositol 3-kinase in oxidative stress-induced disruption of tight junctions. J Biol Chem 278:49239–49245. https://doi.org/10.1074/jbc.M305654200
doi: 10.1074/jbc.M305654200
pubmed: 14500730
Dixit P, Jain DK, Rajpoot JS (2012) Differential effect of oxidative stress on intestinal apparent permeability of drugs transported by paracellular and transcellular route. Eur J Drug Metab Pharmacokinet 37:203–209. https://doi.org/10.1007/s13318-012-0099-4
doi: 10.1007/s13318-012-0099-4
pubmed: 22718103
He Q, Ren P, Kong X et al (2011) Intrauterine growth restriction alters the metabonome of the serum and jejunum in piglets. Mol Biosyst 7:2147–2155. https://doi.org/10.1039/c1mb05024a
doi: 10.1039/c1mb05024a
pubmed: 21584308
Buttgereit F, Brand MD (1995) A hierarchy of ATP-consuming processes in mammalian cells. Biochem J 312:163–167. https://doi.org/10.1042/bj3120163
doi: 10.1042/bj3120163
pubmed: 7492307
pmcid: 1136240
Moore KA, Lemischka IR (2006) Stem cells and their niches. Science 311:1880–1885. https://doi.org/10.1126/science.1110542
doi: 10.1126/science.1110542
pubmed: 16574858
Circu ML, Aw TY (2010) Reactive oxygen species, cellular redox systems, and apoptosis. Free Radic Biol Med 48:749–762. https://doi.org/10.1016/j.freeradbiomed.2009.12.022
doi: 10.1016/j.freeradbiomed.2009.12.022
pubmed: 20045723
pmcid: 2823977
Zhang Y, Marcillat O, Giulivi C et al (1990) The oxidative inactivation of mitochondrial electron transport chain components and ATPase. J Biol Chem 265:16330–16336
pubmed: 2168888
Sandhir R, Sood A, Mehrotra A et al (2012) N-acetylcysteine reverses mitochondrial dysfunctions and behavioral abnormalities in 3-nitropropionic acid-induced Huntington’s disease. Neurodegener Dis 9:145–157. https://doi.org/10.1159/000334273
doi: 10.1159/000334273
pubmed: 22327485
Lu H, Zhang DM, Chen HL et al (2009) N-acetylcysteine suppresses oxidative stress in experimental rats with subarachnoid hemorrhage. J Clin Neurosci 16:684–688. https://doi.org/10.1016/j.jocn.2008.04.021
doi: 10.1016/j.jocn.2008.04.021
pubmed: 19264484
Kuo HT, Lee JJ, Hsiao HH et al (2009) N-acetylcysteine prevents mitochondria from oxidative injury induced by conventional peritoneal dialysate in human peritoneal mesothelial cells. Am J Nephrol 30:179–185. https://doi.org/10.1159/000213502
doi: 10.1159/000213502
pubmed: 19372642
Arakawa M, Ito Y (2007) N-acetylcysteine and neurodegenerative diseases: basic and clinical pharmacology. Cerebellum 6:308–314. https://doi.org/10.1080/14734220601142878
doi: 10.1080/14734220601142878
pubmed: 17853088
Tayman C, Tonbul A, Kosus A et al (2012) N-acetylcysteine may prevent severe intestinal damage in necrotizing enterocolitis. J Pediatr Surg 47:540–550. https://doi.org/10.1016/j.jpedsurg.2011.09.051
doi: 10.1016/j.jpedsurg.2011.09.051
pubmed: 22424351
Romagnoli C, Marcucci T, Picariello L et al (2013) Role of N-acetylcysteine and GSH redox system on total and active MMP-2 in intestinal myofibroblasts of Crohn’s disease patients. Int J Colorectal Dis 28:915–924. https://doi.org/10.1007/s00384-012-1632-2
doi: 10.1007/s00384-012-1632-2
pubmed: 23271497
Stepkowski TM, Kruszewski MK (2011) Molecular cross-talk between the NRF2/KEAP1 signaling pathway, autophagy, and apoptosis. Free Radic Biol Med 50:1186–1195. https://doi.org/10.1016/j.freeradbiomed.2011.01.033
doi: 10.1016/j.freeradbiomed.2011.01.033
pubmed: 21295136
Wang LL, Huang YH, Yan CY et al (2016) N-acetylcysteine ameliorates prostatitis via miR-141 regulating Keap1/Nrf2 signaling. Inflammation 39:938–947. https://doi.org/10.1007/s10753-016-0327-1
doi: 10.1007/s10753-016-0327-1
pubmed: 26941030
Dolinay T, Choi AM, Ryter SW (2012) Heme Oxygenase-1/CO as protective mediators in cigarette smoke-induced lung cell injury and chronic obstructive pulmonary disease. Curr Pharm Biotechnol 13:769–776. https://doi.org/10.2174/138920112800399338
doi: 10.2174/138920112800399338
pubmed: 22201606
Martinez Banaclocha M, Martinez N (1999) N-acetylcysteine elicited increase in cytochrome c oxidase activity in mice synaptic mitochondria. Brain Res 842:249–251. https://doi.org/10.1016/S0006-8993(99)01819-3
doi: 10.1016/S0006-8993(99)01819-3
pubmed: 10526120
Miquel J, Ferrandiz ML, De Juan E et al (1995) N-acetylcysteine protects against age-related decline of oxidative phosphorylation in liver mitochondria. Eur J Pharmacol 292:333–335. https://doi.org/10.1016/0926-6917(95)90041-1
doi: 10.1016/0926-6917(95)90041-1
pubmed: 7796874
Donnelly PJ, Walker RM, Racz WJ (1994) Inhibition of mitochondrial respiration in vivo is an early event in acetaminophen-induced hepatotoxicity. Arch Toxicol 68:110–118. https://doi.org/10.1007/s002040050043
doi: 10.1007/s002040050043
pubmed: 8179480
Banaclocha MM (2001) Therapeutic potential of N-acetylcysteine in age-related mitochondrial neurodegenerative diseases. Med Hypotheses 56:472–477. https://doi.org/10.1054/mehy.2000.1194
doi: 10.1054/mehy.2000.1194
pubmed: 11339849
Seppet E, Gruno M, Peetsalu A et al (2009) Mitochondria and energetic depression in cell pathophysiology. Int J Mol Sci 10:2252–2303. https://doi.org/10.3390/ijms10052252
doi: 10.3390/ijms10052252
pubmed: 19564950
pmcid: 2695278
Xiao H, Wu M, Shao F et al (2016) N-acetyl-L-cysteine protects the enterocyte against oxidative damage by modulation of mitochondrial function. Mediators Inflamm 2016:8364279. https://doi.org/10.1155/2016/8364279
doi: 10.1155/2016/8364279