Comparative Analysis of Anuran Amphibian Skin Microbiomes Across Inland and Coastal Wetlands.
Anuran amphibian
Bacteria
Frog
Microbiome
Mutualism
Pathogen resistance
Secondary salinization
Skin
Journal
Microbial ecology
ISSN: 1432-184X
Titre abrégé: Microb Ecol
Pays: United States
ID NLM: 7500663
Informations de publication
Date de publication:
Aug 2019
Aug 2019
Historique:
received:
06
07
2018
accepted:
15
11
2018
pubmed:
12
12
2018
medline:
19
7
2019
entrez:
12
12
2018
Statut:
ppublish
Résumé
Amphibians host a community of microbes on their skin that helps resist infectious disease via the dual influence of anti-pathogenic microbial species and emergent community dynamics. Many frogs rely on freshwater habitats, but salinization is rapidly increasing saltwater concentrations in wetlands around the globe, increasing the likelihood that frogs will come into contact with salt-contaminated habitats. Currently, we know little about how increased salt exposure will affect the symbiotic relationship between the skin microbes and frog hosts. To better understand how salt exposure in a natural context affects the frog skin microbiome, we use Hyla cinerea, a North American treefrog species that can inhabit brackish wetlands, to explore three questions. First, we determine the extent that microbial communities in the environment and on frog skin are similar across populations. Second, we assess the microbial species richness and relative abundance on frogs from habitats with different salinity levels to determine how salinity affects the microbiome. Third, we test whether the relative abundances of putatively pathogen-resistant bacterial species differ between frogs from inland and coastal environments. We found that the frog microbiome is more similar among frogs than to the microbial communities found in surface water and soil, but there is overlap between frog skin and the environmental samples. Skin microbial community richness did not differ among populations, but the relative abundances of microbes were different across populations and salinities. We found no differences in the relative abundances of the anti-fungal bacteria Janthinobacterium lividum, the genus Pseudomonas, and Serratia marcescens, suggesting that environmental exposure to saltwater has a limited influence on these putatively beneficial bacterial taxa.
Identifiants
pubmed: 30535916
doi: 10.1007/s00248-018-1295-9
pii: 10.1007/s00248-018-1295-9
doi:
Types de publication
Comparative Study
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
348-360Subventions
Organisme : National Science Foundation
ID : DEB 1136640
Organisme : North Carolina SeaGrant
ID : Project No. 2014-R/14-HCE-3
Références
Am J Gastroenterol. 2000 Jan;95(1 Suppl):S8-10
pubmed: 10634220
Vet Clin North Am Exot Anim Pract. 2001 May;4(2):413-40, vi
pubmed: 11480360
Science. 2001 Sep 28;293(5539):2413-8
pubmed: 11577228
Proc Natl Acad Sci U S A. 2004 Jul 27;101(30):10854-61
pubmed: 15243158
Nature. 2004 Aug 19;430(7002):881-4
pubmed: 15318219
Microb Ecol. 2005 Feb;49(2):257-64
pubmed: 15965723
Res Microbiol. 2006 Jan-Feb;157(1):37-48
pubmed: 16376523
J Exp Biol. 2006 Jan;209(Pt 2):202-26
pubmed: 16391344
Nature. 2006 Jan 12;439(7073):161-7
pubmed: 16407945
Appl Environ Microbiol. 2006 Jul;72(7):5069-72
pubmed: 16820507
Ecology. 2006 Jun;87(6):1399-410
pubmed: 16869414
Appl Environ Microbiol. 2007 Aug;73(16):5261-7
pubmed: 17586664
Environ Res. 2009 Jan;109(1):40-5
pubmed: 18976747
Expert Rev Vaccines. 2008 Dec;7(10):1493-506
pubmed: 19053206
ISME J. 2009 Jul;3(7):818-24
pubmed: 19322245
Appl Environ Microbiol. 2009 Nov;75(21):6635-8
pubmed: 19717627
Vet Clin North Am Exot Anim Pract. 2009 Sep;12(3):597-608, Table of Contents
pubmed: 19732711
Trends Ecol Evol. 2010 Feb;25(2):109-18
pubmed: 19836101
Bioinformatics. 2010 Jan 15;26(2):266-7
pubmed: 19914921
Ecology. 2009 Dec;90(12):3566-74
pubmed: 20120823
Nat Methods. 2010 May;7(5):335-6
pubmed: 20383131
Trends Ecol Evol. 2010 Jun;25(6):325-31
pubmed: 20392517
Science. 2010 Jun 18;328(5985):1517-20
pubmed: 20558707
Bioinformatics. 2010 Oct 1;26(19):2460-1
pubmed: 20709691
Nat Rev Microbiol. 2011 Apr;9(4):244-53
pubmed: 21407241
ISME J. 2011 Oct;5(10):1571-9
pubmed: 21472016
Ecohealth. 2011 Dec;8(4):501-6
pubmed: 22328095
ISME J. 2012 Aug;6(8):1621-4
pubmed: 22402401
PLoS One. 2012;7(6):e38473
pubmed: 22685572
Nat Methods. 2013 Jan;10(1):57-9
pubmed: 23202435
Comp Biochem Physiol A Comp Physiol. 1975 Aug 1;51(4):937-41
pubmed: 237720
Science. 2013 Aug 2;341(6145):499-504
pubmed: 23908227
Nature. 2013 Oct 3;502(7469):96-9
pubmed: 23995682
Mol Ecol. 2014 Mar;23(6):1238-50
pubmed: 24171949
ISME J. 2014 Apr;8(4):830-40
pubmed: 24335825
Nat Commun. 2014;5:3114
pubmed: 24445449
PLoS One. 2014 Apr 30;9(4):e96375
pubmed: 24789229
ISME J. 2014 Nov;8(11):2207-17
pubmed: 24858782
Front Microbiol. 2014 Aug 21;5:441
pubmed: 25191317
Oecologia. 2015 Mar;177(3):901-910
pubmed: 25416999
Proc Biol Sci. 2015 Apr 22;282(1805):null
pubmed: 25788591
Mol Ecol. 2015 May;24(10):2537-50
pubmed: 25819646
Front Microbiol. 2015 Oct 27;6:1171
pubmed: 26579083
Mol Ecol. 2016 Mar;25(6):1308-23
pubmed: 26840035
Appl Environ Microbiol. 2016 Apr 04;82(8):2457-2466
pubmed: 26873311
Front Microbiol. 2016 Mar 16;7:333
pubmed: 27014249
Appl Environ Microbiol. 2016 May 31;82(12):3493-3502
pubmed: 27037118
PLoS Pathog. 2016 Sep 08;12(9):e1005796
pubmed: 27606683
MBio. 2016 Oct 4;7(5):
pubmed: 27703075
Philos Trans R Soc Lond B Biol Sci. 2016 Dec 5;371(1709):
pubmed: 28080989
Front Zool. 2017 Aug 1;14:40
pubmed: 28775757
Front Microbiol. 2017 Sep 13;8:1751
pubmed: 28959244
Front Microbiol. 2018 Mar 20;9:466
pubmed: 29615997
Proc Natl Acad Sci U S A. 1998 Jul 21;95(15):9031-6
pubmed: 9671799