Stereoinversion of Unactivated Alcohols by Tethered Sulfonamides.
alcohol substitution
asymmetric synthesis
indoline
iron
sulfonamides
Journal
Angewandte Chemie (International ed. in English)
ISSN: 1521-3773
Titre abrégé: Angew Chem Int Ed Engl
Pays: Germany
ID NLM: 0370543
Informations de publication
Date de publication:
04 02 2019
04 02 2019
Historique:
received:
09
11
2018
revised:
07
12
2018
pubmed:
12
12
2018
medline:
19
8
2020
entrez:
12
12
2018
Statut:
ppublish
Résumé
The direct, catalytic substitution of unactivated alcohols remains an undeveloped area of organic synthesis. Moreover, catalytic activation of this difficult electrophile with predictable stereo-outcomes presents an even more formidable challenge. Described herein is a simple iron-based catalyst system which provides the mild, direct conversion of secondary and tertiary alcohols to sulfonamides. Starting from enantioenriched alcohols, the intramolecular variant proceeds with stereoinversion to produce enantioenriched 2- and 2,2-subsituted pyrrolidines and indolines, without prior derivatization of the alcohol or solvolytic conditions.
Identifiants
pubmed: 30536739
doi: 10.1002/anie.201812894
pmc: PMC6489501
mid: NIHMS1007501
doi:
Substances chimiques
Alcohols
0
Sulfonamides
0
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.
Langues
eng
Sous-ensembles de citation
IM
Pagination
1727-1731Subventions
Organisme : NIGMS NIH HHS
ID : T32 GM109825
Pays : United States
Organisme : National Science Foundation
ID : CHE-1254783
Pays : International
Organisme : Institute for Basic Science in Korea
ID : IBS-R010-A1
Pays : International
Informations de copyright
© 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Références
Acc Chem Res. 2002 Nov;35(11):984-95
pubmed: 12437323
J Am Chem Soc. 2003 Sep 3;125(35):10538-9
pubmed: 12940734
Nature. 1950 Oct 21;166(4225):679-80
pubmed: 14780194
J Am Chem Soc. 2004 Jun 16;126(23):7359-67
pubmed: 15186175
Angew Chem Int Ed Engl. 2006 Apr 28;45(18):2938-41
pubmed: 16555362
J Org Chem. 2006 Oct 13;71(21):8298-301
pubmed: 17025331
Org Lett. 2007 Sep 27;9(20):4029-32
pubmed: 17764194
Chem Rev. 2009 Jun;109(6):2551-651
pubmed: 19382806
Angew Chem Int Ed Engl. 2010;49(2):256-9
pubmed: 19967690
Org Lett. 2010 Apr 16;12(8):1808-11
pubmed: 20337417
Org Lett. 2011 May 20;13(10):2626-9
pubmed: 21510616
J Am Chem Soc. 2012 Feb 1;134(4):2020-3
pubmed: 22257169
J Am Chem Soc. 2013 Jun 19;135(24):8854-6
pubmed: 23734771
Org Lett. 2013 Jun 21;15(12):3134-7
pubmed: 23746325
Nature. 2013 Sep 12;501(7466):195-9
pubmed: 24025839
Org Lett. 2014 Apr 4;16(7):2026-9
pubmed: 24666277
Org Biomol Chem. 2014 May 21;12(19):2993-3003
pubmed: 24699913
J Am Chem Soc. 2014 May 28;136(21):7688-700
pubmed: 24833267
J Am Chem Soc. 2015 Apr 15;137(14):4646-9
pubmed: 25803790
J Am Chem Soc. 2015 Aug 5;137(30):9555-8
pubmed: 26196521
Angew Chem Int Ed Engl. 2016 Feb 24;55(9):3148-52
pubmed: 26822188
Science. 2016 Apr 1;352(6281):32-3
pubmed: 27034358
Nature. 2018 Apr;556(7702):447-451
pubmed: 29695848
Org Biomol Chem. 2018 Oct 31;16(42):7774-7781
pubmed: 30306184
Org Lett. 2018 Nov 16;20(22):7057-7061
pubmed: 30378434