π-Hydrogen bonding and aromaticity: a systematic interplay study.


Journal

Physical chemistry chemical physics : PCCP
ISSN: 1463-9084
Titre abrégé: Phys Chem Chem Phys
Pays: England
ID NLM: 100888160

Informations de publication

Date de publication:
02 Jan 2019
Historique:
pubmed: 13 12 2018
medline: 13 12 2018
entrez: 13 12 2018
Statut: ppublish

Résumé

Quantum DFT calculations, corrected for long-range interactions, have been carried out on complex models formed between HF as a proton donor and 2-methylene-2H-indene derivatives as proton acceptors. Using various exocyclic X substitutions, mutual effects of the aromaticity and the strength of the resulting π-hydrogen bond (after its evaluation by AIM methodology) have been investigated. The results show that the aromaticity of 6-membered rings and the hydrogen bond strength increase upon increasing the electron-donating character of the X-substituents. Based on some aromaticity indices (HOMA, FLU, SA and NICS(1)zz), it has been shown that the formation of a π-hydrogen bond causes an increase of aromaticity of the 6-membered ring. Also, the strength of the resulting π-hydrogen bond (with an energy of about 4.0 to 7.0 kcal mol-1) depends on the aromaticity of the 6-membered ring and increases with an increase in the aromaticity. In addition, a linear relationship was found between the most negative value of the molecular electrostatic potential (Vmin) and the HOMA, which confirms that the Vmin in the region of the studied ring could be used as a new index to estimate the amount of aromaticity. The electronic properties of the complexes have also been evaluated by means of the molecular electrostatic potential (MEP), the atoms in molecules (AIM) and the natural bond orbital (NBO) analyses.

Identifiants

pubmed: 30540313
doi: 10.1039/c8cp07003b
doi:

Types de publication

Journal Article

Langues

eng

Pagination

623-630

Auteurs

A-Reza Nekoei (AR)

Department of Chemistry, Shiraz University of Technology, Shiraz 71555-313, Iran. nekoei@sutech.ac.ir.

Classifications MeSH