Three-Dimensional Quantification of the Facet Evolution of Pt Nanoparticles in a Variable Gaseous Environment.
3D imaging
Pt nanoparticles
catalysis
convolutional neural networks
in situ STEM
quantitative ADF STEM
Journal
Nano letters
ISSN: 1530-6992
Titre abrégé: Nano Lett
Pays: United States
ID NLM: 101088070
Informations de publication
Date de publication:
09 01 2019
09 01 2019
Historique:
pubmed:
13
12
2018
medline:
13
12
2018
entrez:
13
12
2018
Statut:
ppublish
Résumé
Pt nanoparticles play an essential role in a wide variety of catalytic reactions. The activity of the particles strongly depends on their three-dimensional (3D) structure and exposed facets, as well as on the reactive environment. High-resolution electron microscopy has often been used to characterize nanoparticle catalysts but unfortunately most observations so far have been either performed in vacuum and/or using conventional (2D) in situ microscopy. The latter however does not provide direct 3D morphological information. We have implemented a quantitative methodology to measure variations of the 3D atomic structure of nanoparticles under the flow of a selected gas. We were thereby able to quantify refaceting of Pt nanoparticles with atomic resolution during various oxidation-reduction cycles. In a H
Identifiants
pubmed: 30540912
doi: 10.1021/acs.nanolett.8b04303
pmc: PMC6437648
doi:
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Pagination
477-481Références
Nat Mater. 2012 Sep;11(9):775-80
pubmed: 22886067
Nano Lett. 2013 Sep 11;13(9):4236-41
pubmed: 23952010
Nat Mater. 2016 Dec;15(12):1248-1254
pubmed: 27595349
Chem Mater. 2017 May 9;29(9):4122-4128
pubmed: 28503030
Science. 2007 May 4;316(5825):732-5
pubmed: 17478717
Nature. 2011 Feb 17;470(7334):374-7
pubmed: 21289625
Ultramicroscopy. 2013 Nov;134:23-33
pubmed: 23759467
Ultramicroscopy. 2008 Aug;108(9):993-8
pubmed: 18556124
Science. 2005 Jan 28;307(5709):555-8
pubmed: 15681379
Nature. 2008 Jan 3;451(7174):46-8
pubmed: 18066049
Phys Med Biol. 2005 Jun 21;50(12):2887-905
pubmed: 15930609
Nature. 2012 Mar 21;483(7390):444-7
pubmed: 22437612
Nat Mater. 2012 Nov;11(11):930-5
pubmed: 23085569
Nanoscale. 2017 Jun 29;9(25):8791-8798
pubmed: 28621785
Phys Chem Chem Phys. 2017 Mar 28;19(12):8485-8495
pubmed: 28287221
J Microsc. 2018 Feb;269(2):117-126
pubmed: 28394413
Science. 2002 Mar 15;295(5562):2053-5
pubmed: 11896271
Angew Chem Int Ed Engl. 2006 Nov 27;45(46):7824-8
pubmed: 17089428
Nat Mater. 2014 Sep;13(9):884-90
pubmed: 25038730
IEEE Trans Image Process. 1996;5(8):1266-71
pubmed: 18285214
Nano Lett. 2014 Nov 12;14(11):6336-41
pubmed: 25340541
Science. 2010 Feb 12;327(5967):850-3
pubmed: 20150498
Nano Lett. 2011 Aug 10;11(8):3420-4
pubmed: 21786766
Science. 2012 Jan 20;335(6066):317-9
pubmed: 22267808
Microsc Microanal. 2012 Aug;18(4):656-66
pubmed: 22835379