Cyclical Treatment of Colorectal Tumor Spheroids Induces Resistance to MEK Inhibitors.
Journal
Translational oncology
ISSN: 1936-5233
Titre abrégé: Transl Oncol
Pays: United States
ID NLM: 101472619
Informations de publication
Date de publication:
Mar 2019
Mar 2019
Historique:
received:
05
10
2018
revised:
19
11
2018
accepted:
19
11
2018
pubmed:
15
12
2018
medline:
15
12
2018
entrez:
15
12
2018
Statut:
ppublish
Résumé
Adaptive drug resistance is a major obstacle to successful treatment of colorectal cancers. Physiologic tumor models of drug resistance are crucial to understand mechanisms of treatment failure and improve therapy by developing new therapeutics and treatment strategies. Using our aqueous two-phase system microtechnology, we developed colorectal tumor spheroids and periodically treated them with sub-lethal concentrations of three Mitogen Activated Kinase inhibitors (MEKi) used in clinical trials. We used long-term, periodic treatment and recovery of spheroids to mimic cycles of clinical chemotherapy and implemented a growth rate metric to quantitatively assess efficacy of the MEKi during treatment. Our results showed that efficacy of the MEKi significantly reduced with increased treatment cycles. Using a comprehensive molecular analysis, we established that resistance of colorectal tumor spheroids to the MEKi developed through activation of the PI3K/AKT/mTOR pathway. We also showed that other potential feedback mechanisms, such as STAT3 activation or amplified B-RAF, did not account for resistance to the MEKi. We combined each of the three MEKi with a PI3K/mTOR inhibitor and showed that the combination treatments synergistically blocked resistance to the MEKi. Importantly, and unlike the individual inhibitors, we demonstrated that synergistic concentrations of combinations of MEK and PI3K/mTOR inhibitors effectively inhibited growth of colorectal tumor spheroids in long-term treatments. This proof-of-concept study to model treatment-induced drug resistance of cancer cells using 3D cultures offers a unique approach to identify underlying molecular mechanisms and develop effective treatments.
Identifiants
pubmed: 30550927
pii: S1936-5233(18)30586-2
doi: 10.1016/j.tranon.2018.11.009
pmc: PMC6299152
pii:
doi:
Types de publication
Journal Article
Langues
eng
Pagination
404-416Subventions
Organisme : NCI NIH HHS
ID : R15 CA216413
Pays : United States
Informations de copyright
Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
Références
Nat Med. 1999 Jul;5(7):810-6
pubmed: 10395327
Nature. 2002 Jun 27;417(6892):949-54
pubmed: 12068308
Clin Cancer Res. 2005 Mar 1;11(5):1983-9
pubmed: 15756024
Lancet Oncol. 2005 May;6(5):322-7
pubmed: 15863380
Melanoma Res. 2006 Feb;16(1):23-7
pubmed: 16432452
Oncogene. 2007 May 14;26(22):3279-90
pubmed: 17496922
Cancer Res. 2009 Jan 15;69(2):565-72
pubmed: 19147570
Nat Rev Cancer. 2009 Aug;9(8):550-62
pubmed: 19629070
Int J Cancer. 2009 Nov 15;125(10):2332-41
pubmed: 19637312
Proc Natl Acad Sci U S A. 2009 Oct 27;106(43):18351-6
pubmed: 19805051
PLoS Comput Biol. 2009 Nov;5(11):e1000557
pubmed: 19893626
Cancer Res. 2010 Jan 15;70(2):440-6
pubmed: 20068163
Sci Signal. 2010 Nov 23;3(149):ra84
pubmed: 21098728
Clin Cancer Res. 2011 Mar 15;17(6):1351-61
pubmed: 21138857
Lancet Oncol. 2011 Jun;12(6):594-603
pubmed: 21163703
Am J Clin Pathol. 2011 Feb;135(2):245-52
pubmed: 21228365
Sci Signal. 2011 Mar 29;4(166):ra17
pubmed: 21447798
Mol Cancer Ther. 2011 Aug;10(8):1440-9
pubmed: 21632463
Cancer Res. 2011 Aug 15;71(16):5535-45
pubmed: 21705440
Cancer Res. 2012 Jan 1;72(1):210-9
pubmed: 22084396
Cancer Res. 2012 Feb 1;72(3):779-89
pubmed: 22180495
Clin Cancer Res. 2012 Apr 15;18(8):2316-25
pubmed: 22261800
Br J Cancer. 2012 Apr 10;106(8):1386-94
pubmed: 22415236
BMC Biol. 2012 Mar 22;10:29
pubmed: 22439642
Cancer Discov. 2012 Mar;2(3):227-35
pubmed: 22448344
Cancer Res. 2012 Jul 1;72(13):3228-37
pubmed: 22552284
Lancet Oncol. 2013 Jan;14(1):29-37
pubmed: 23168366
Nature. 2013 Feb 14;494(7436):251-5
pubmed: 23302800
Mol Cancer Ther. 2013 Oct;12(10):2213-25
pubmed: 23918833
Oncogenesis. 2013 Sep 16;2:e71
pubmed: 24042735
PLoS One. 2013 Dec 10;8(12):e81763
pubmed: 24339963
Adv Drug Deliv Rev. 2014 Apr;69-70:29-41
pubmed: 24636868
CA Cancer J Clin. 2014 Mar-Apr;64(2):104-17
pubmed: 24639052
PLoS One. 2014 Aug 13;9(8):e103817
pubmed: 25119185
Cell Mol Bioeng. 2014 Sep 1;7(3):344-354
pubmed: 25221631
PLoS One. 2014 Nov 17;9(11):e113037
pubmed: 25401499
Adv Funct Mater. 2014 Nov 5;24(41):6509-6515
pubmed: 25411577
Cancer Discov. 2015 Apr;5(4):358-67
pubmed: 25673644
Clin Cancer Res. 2015 Jul 15;21(14):3230-3240
pubmed: 25813020
Nat Rev Drug Discov. 2015 Jul;14(7):475-86
pubmed: 26091267
Mol Cancer Ther. 2015 Oct;14(10):2175-86
pubmed: 26206338
Nat Rev Cancer. 2015 Oct;15(10):577-92
pubmed: 26399658
Sci Rep. 2016 Mar 01;6:22498
pubmed: 26928089
Exp Biol Med (Maywood). 2016 May;241(9):939-54
pubmed: 27072562
Nature. 2016 Jun 30;534(7609):647-51
pubmed: 27338794
Ann Oncol. 2016 Oct;27(10):1836-48
pubmed: 27436848
Adv Healthc Mater. 2016 Nov;5(21):2788-2798
pubmed: 27603912
Mol Pharm. 2016 Nov 7;13(11):3724-3735
pubmed: 27653969
SLAS Discov. 2017 Jun;22(5):507-515
pubmed: 28324660
Adv Healthc Mater. 2018 Mar;7(6):e1700980
pubmed: 29205942