Effects of Positive and Negative Expectations on Human Pain Perception Engage Separate But Interrelated and Dependently Regulated Cerebral Mechanisms.
Adult
Anticipation, Psychological
Brain
/ diagnostic imaging
Brain Mapping
Cues
Female
Gyrus Cinguli
/ diagnostic imaging
Hippocampus
/ diagnostic imaging
Humans
Magnetic Resonance Imaging
Male
Pain
/ diagnostic imaging
Pain Measurement
Pain Perception
Periaqueductal Gray
/ diagnostic imaging
Prefrontal Cortex
/ diagnostic imaging
Thalamus
/ diagnostic imaging
Young Adult
anterior cingulate cortex
expectation
functional magnetic resonance imaging
insula
pain
prediction error
Journal
The Journal of neuroscience : the official journal of the Society for Neuroscience
ISSN: 1529-2401
Titre abrégé: J Neurosci
Pays: United States
ID NLM: 8102140
Informations de publication
Date de publication:
13 02 2019
13 02 2019
Historique:
received:
21
08
2018
revised:
15
11
2018
accepted:
10
12
2018
pubmed:
16
12
2018
medline:
18
12
2019
entrez:
16
12
2018
Statut:
ppublish
Résumé
Expectations substantially influence pain perception, but the relationship between positive and negative expectations remains unclear. Recent evidence indicates that the integration between pain-related expectations and prediction errors is crucial for pain perception, which suggests that aversive prediction error-associated regions, such as the anterior insular cortex (aIC) and rostral anterior cingulate cortex (rACC), may play a pivotal role in expectation-induced pain modulation and help to delineate the relationship between positive and negative expectations. In a stimulus expectancy paradigm combining fMRI in healthy volunteers of both sexes, we found that, although positive and negative expectations respectively engaged the right aIC and right rACC to modulate pain, their associated activations and pain rating changes were significantly correlated. When positive and negative expectations modulated pain, the right aIC and rACC exhibited opposite coupling with periaqueductal gray (PAG) and the mismatch between actual and expected pain respectively modulated their coupling with PAG and thalamus across individuals. Participants' certainty about expectations predicted the extent of pain modulation, with positive expectations involving connectivity between aIC and hippocampus, a region regulating anxiety, and negative expectations engaging connectivity between rACC and lateral orbitofrontal cortex, a region reflecting outcome value and certainty. Interestingly, the strength of these certainty-related connectivities was also significantly associated between positive and negative expectations. These findings suggest that aversive prediction-error-related regions interact with pain-processing circuits to underlie stimulus expectancy effects on pain, with positive and negative expectations engaging dissociable but interrelated neural responses that are dependently regulated by individual certainty about expectations.
Identifiants
pubmed: 30552181
pii: JNEUROSCI.2154-18.2018
doi: 10.1523/JNEUROSCI.2154-18.2018
pmc: PMC6381241
doi:
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
1261-1274Informations de copyright
Copyright © 2019 the authors 0270-6474/19/391262-14$15.00/0.
Références
Hum Brain Mapp. 2013 Jan;34(1):109-49
pubmed: 22131304
Nat Rev Neurosci. 2014 Mar;15(3):181-92
pubmed: 24552786
J Neurosci. 2010 Sep 29;30(39):12964-77
pubmed: 20881115
J Comp Neurol. 1992 Sep 15;323(3):341-58
pubmed: 1460107
Neuron. 2003 Apr 24;38(2):329-37
pubmed: 12718865
Psychol Rev. 1980 Nov;87(6):532-52
pubmed: 7443916
Nat Neurosci. 2005 Sep;8(9):1234-40
pubmed: 16116445
Hum Brain Mapp. 2015 Sep;36(9):3459-71
pubmed: 26138504
Neuron. 2012 Dec 6;76(5):998-1009
pubmed: 23217747
Trends Neurosci. 2015 Nov;38(11):741-750
pubmed: 26603560
Neuron. 2014 Dec 17;84(6):1143-56
pubmed: 25521376
Trends Cogn Sci. 2006 Jul;10(7):294-300
pubmed: 16793323
Pain. 2007 Nov;132 Suppl 1:S26-45
pubmed: 17964077
J Comp Neurol. 1988 Jan 1;267(1):131-46
pubmed: 2449474
Pain. 2013 Mar;154(3):402-10
pubmed: 23352758
Annu Rev Neurosci. 2003;26:1-30
pubmed: 12651967
J Neurophysiol. 1998 Jul;80(1):1-27
pubmed: 9658025
PLoS Biol. 2006 Jul;4(8):e233
pubmed: 16802856
J Neurosci. 2001 Dec 15;21(24):9896-903
pubmed: 11739597
Handb Exp Pharmacol. 2014;225:37-69
pubmed: 25304525
J Neurosci. 2007 May 2;27(18):4826-31
pubmed: 17475790
J Neurosci. 2008 Dec 3;28(49):13354-62
pubmed: 19052227
J Neurosci. 2018 Jul 18;38(29):6461-6474
pubmed: 29934355
Neuroimage. 2002 Jan;15(1):273-89
pubmed: 11771995
J Comp Neurol. 2000 Jul 10;422(4):556-78
pubmed: 10861526
Science. 2016 Nov 4;354(6312):584-587
pubmed: 27811269
Neuroimage. 2012 Jul 16;61(4):1277-86
pubmed: 22484411
J Neurosci. 2017 Oct 4;37(40):9715-9723
pubmed: 28883019
Proc Natl Acad Sci U S A. 2000 Aug 1;97(16):9281-6
pubmed: 10908676
Elife. 2017 May 19;6:
pubmed: 28524817
Neuron. 2014 Mar 19;81(6):1223-1239
pubmed: 24656247
J Neurosci. 2014 Oct 29;34(44):14526-35
pubmed: 25355207
Neuroimage. 1997 Oct;6(3):218-29
pubmed: 9344826
Neuroimage. 2012 Nov 15;63(3):1011-9
pubmed: 22831862
J Neurosci. 2010 Dec 1;30(48):16324-31
pubmed: 21123578
Pain. 2013 Oct;154(10):2120-9
pubmed: 23811039
Trends Neurosci. 2011 Jun;34(6):283-92
pubmed: 21549434
Pain. 2013 Mar;154(3):459-67
pubmed: 23352757
J Neurosci. 2002 Apr 15;22(8):3206-14
pubmed: 11943821
J Neurosci. 2006 Apr 19;26(16):4437-43
pubmed: 16624963
Neuron. 2007 Aug 2;55(3):377-91
pubmed: 17678852
J Neurosci. 2007 Jun 6;27(23):6313-9
pubmed: 17554005
Science. 2000 Jun 9;288(5472):1769-72
pubmed: 10846154
J Comp Neurol. 1982 Apr 1;206(2):146-58
pubmed: 7085925
Proc Natl Acad Sci U S A. 2016 Jul 12;113(28):7900-5
pubmed: 27357684
J Neurosci. 2013 Mar 27;33(13):5638-46
pubmed: 23536078
Pain. 2008 Nov 30;140(2):376-86
pubmed: 18926635
Eur J Pain. 2005 Aug;9(4):463-84
pubmed: 15979027
PLoS One. 2011 Apr 07;6(4):e17870
pubmed: 21490964
Neuroimage. 2002 May;16(1):217-40
pubmed: 11969330
Proc Natl Acad Sci U S A. 2005 Sep 6;102(36):12950-5
pubmed: 16150703
Nat Neurosci. 2014 Dec;17(12):1644-54
pubmed: 25413091
Hum Brain Mapp. 2015 Feb;36(2):744-55
pubmed: 25324216
Nat Rev Neurosci. 2016 Mar;17(3):183-95
pubmed: 26865020
Neurosci Biobehav Rev. 2013 Aug;37(7):1297-310
pubmed: 23567522
Elife. 2017 Feb 17;6:
pubmed: 28211789
Neuroimage. 2015 May 15;112:197-207
pubmed: 25776211
Nature. 2006 May 11;441(7090):223-6
pubmed: 16633341
Hum Brain Mapp. 2002 Jan;15(1):1-25
pubmed: 11747097
J Neurosci. 1999 Oct 15;19(20):9029-38
pubmed: 10516320
Pain. 2007 Mar;128(1-2):101-10
pubmed: 17070996
Neurosci Lett. 1999 Feb 26;262(1):61-4
pubmed: 10076873
Brain Res Brain Res Rev. 1996 Oct;22(3):229-44
pubmed: 8957561
Neuron. 2001 Feb;29(2):537-45
pubmed: 11239442
J Neurosci. 2006 Sep 13;26(37):9530-7
pubmed: 16971537
Hum Brain Mapp. 2012 Sep;33(9):2005-34
pubmed: 21761507
Science. 1997 Mar 14;275(5306):1593-9
pubmed: 9054347
Nature. 2004 Jun 10;429(6992):664-7
pubmed: 15190354
Philos Trans R Soc Lond B Biol Sci. 2008 Dec 12;363(1511):3787-800
pubmed: 18829426
Pain. 2008 Oct 15;139(2):324-32
pubmed: 18584963
Neuron. 2003 Apr 24;38(2):339-46
pubmed: 12718866
Nat Neurosci. 2014 Nov;17(11):1607-12
pubmed: 25282614