Immune aspects of the bi-directional neuroimmune facilitator TRPV1.
Anti-tumor therapy
Capsaicin
Neuroimmunity
TRPV1
TRPV2
Journal
Molecular biology reports
ISSN: 1573-4978
Titre abrégé: Mol Biol Rep
Pays: Netherlands
ID NLM: 0403234
Informations de publication
Date de publication:
Feb 2019
Feb 2019
Historique:
received:
11
10
2018
accepted:
06
12
2018
pubmed:
17
12
2018
medline:
11
7
2019
entrez:
17
12
2018
Statut:
ppublish
Résumé
A rapidly growing area of interest in biomedical science involves the reciprocal crosstalk between the sensory nervous and immune systems. Both of these systems are highly integrated, detecting potential environmental harms and restoring homeostasis. Many different cytokines, receptors, neuropeptides, and other proteins are involved in this bidirectional communication that are common to both systems. One such family of proteins includes the transient receptor potential vanilloid (TRPV) proteins. Though much progress has been made in understanding TRPV proteins in the nervous system, their functions in the immune system are not well elucidated. Hence, further understanding their role in the peripheral immune system and as regulators of neuroimmunity is critical for evaluating their potential as therapeutic targets for numerous inflammatory disorders, cancers, and other disease states. Here, we focus on the latest advancements in understanding TRPV1 and TRPV2's roles in the immune system, TRPV1 in neuroimmunity, and TRPV1's potential involvement in anti-tumor therapy.
Identifiants
pubmed: 30554315
doi: 10.1007/s11033-018-4560-6
pii: 10.1007/s11033-018-4560-6
doi:
Substances chimiques
TRPV Cation Channels
0
Types de publication
Journal Article
Review
Langues
eng
Sous-ensembles de citation
IM
Pagination
1499-1510Références
Amachi R, Hiasa M, Teramachi J, Harada T, Oda A, Nakamura S, Abe M et al (2016) A vicious cycle between acid sensing and survival signaling in myeloma cells: acid-induced epigenetic alteration. Oncotarget. https://doi.org/10.18632/oncotarget.11927
doi: 10.18632/oncotarget.11927
pubmed: 27738323
pmcid: 5346698
Amantini C, Mosca M, Nabissi M, Lucciarini R, Caprodossi S, Arcella A, Santoni G et al (2007) Capsaicin-induced apoptosis of glioma cells is mediated by TRPV1 vanilloid receptor and requires p38 MAPK activation. J Neurochem 102(3):977–990. https://doi.org/10.1111/j.1471-4159.2007.04582.x
doi: 10.1111/j.1471-4159.2007.04582.x
pubmed: 17442041
Assas BM, Wakid MH, Zakai HA, Miyan JA, Pennock JL (2016) Transient receptor potential vanilloid 1 expression and function in splenic dendritic cells: a potential role in immune homeostasis. Immunology 147(3):292–304. https://doi.org/10.1111/imm.12562
doi: 10.1111/imm.12562
pubmed: 26643862
pmcid: 4754610
Bailey TW, Jin Y-HH, Doyle MW, Andresen MC (2002) Vanilloid-sensitive afferents activate neurons with prominent A-type potassium currents in nucleus tractus solitarius. The Journal of Neuroscience 22(18):8230–8237. https://doi.org/10.1523/JNEUROSCI.22-18-08230.2002
doi: 10.1523/JNEUROSCI.22-18-08230.2002
pubmed: 12223577
Basu S, Srivastava P (2005) Immunological role of neuronal receptor vanilloid receptor 1 expressed on dendritic cells. Proc Natl Acad Sci USA 102(14):5120–5125. https://doi.org/10.1073/pnas.0407780102
doi: 10.1073/pnas.0407780102
pubmed: 15793000
Bertin S, Aoki-Nonaka Y, De Jong PR, Nohara LL, Xu H, Stanwood SR, Raz E et al (2014) The ion channel TRPV1 regulates the activation and proinflammatory properties of CD
doi: 10.1038/ni.3009
pubmed: 25282159
pmcid: 4843825
Bertin S, Aoki-Nonaka Y, Lee J, De Jong PR, Kim P, Han T, Raz E et al (2017) The TRPA1 ion channel is expressed in CD
doi: 10.1136/gutjnl-2015-310710
pubmed: 27325418
Bertin S, De Jong PR, Jefferies WA, Raz E (2014) Novel immune function for the TRPV1 channel in T lymphocytes. Channels. https://doi.org/10.4161/19336950.2014.991640
doi: 10.4161/19336950.2014.991640
pubmed: 25530461
pmcid: 4594317
Bode AM, Dong Z (2011) The two faces of capsaicin. Can Res. https://doi.org/10.1158/0008-5472.CAN-10-3756
doi: 10.1158/0008-5472.CAN-10-3756
Borbély É, Botz B, Bölcskei K, Kenyér T, Kereskai L, Kiss T, Szolcsányi J, Pintér E, Csepregi JZ, Mócsai A, Helyes Z (2015) Capsaicin-sensitive sensory nerves exert complex regulatory functions in the serum-transfer mouse model of autoimmune arthritis. Brain Behav Immun 45:50–59
doi: 10.1016/j.bbi.2014.12.012
Boyd RS, Jukes-Jones R, Walewska R, Brown D, Dyer MJS, Cain K (2009) Protein profiling of plasma membranes defines aberrant signaling pathways in mantle cell lymphoma. Mol Cell Proteom 8(7):1501–1515. https://doi.org/10.1074/mcp.M800515-MCP200
doi: 10.1074/mcp.M800515-MCP200
Caprodossi S, Amantini C, Nabissi M, Morelli MB, Farfariello V, Santoni M, Santoni G et al (2011) Capsaicin promotes a more aggressive gene expression phenotype and invasiveness in null-TRPV1 urothelial cancer cells. Carcinogenesis 32(5):686–694. https://doi.org/10.1093/carcin/bgr025
doi: 10.1093/carcin/bgr025
pubmed: 21310942
Caterina MJ, Rosen TA, Tominaga M, Brake AJ, Julius D (1999) A capsaicin-receptor homologue with a high threshold for noxious heat. Nature 398(6726):436–441. https://doi.org/10.1038/18906
doi: 10.1038/18906
pubmed: 10201375
Cavanaugh DJ, Chesler AT, Jackson AC, Sigal YM, Yamanaka H, Grant R, Basbaum AI et al (2011) Trpv1 reporter mice reveal highly restricted brain distribution and functional expression in arteriolar smooth muscle cells. J Neurosci 31(13):5067–5077
doi: 10.1523/JNEUROSCI.6451-10.2011
Cevikbas F, Wang X, Akiyama T, Kempkes C, Savinko T, Antal A, Steinhoff M et al (2014) A sensory neuron-expressed IL-31 receptor mediates T helper cell-dependent itch: involvement of TRPV1 and TRPA1. J Allergy Clin Immunol. https://doi.org/10.1016/j.jaci.2013.10.048
doi: 10.1016/j.jaci.2013.10.048
pubmed: 24373353
Cheung CKY, Lan LL, Kyaw M, Mak ADP, Chan A, Chan Y, Wu JCY (2018) Up-regulation of transient receptor potential vanilloid (TRPV) and down-regulation of brain-derived neurotrophic factor (BDNF) expression in patients with functional dyspepsia (FD). Neurogastroenterol Motil 30(2):e13176. https://doi.org/10.1111/nmo.13176
doi: 10.1111/nmo.13176
Chora AA, Fontoura P, Cunha A, Pais TF, Cardoso S, Ho PP, Lee LY, Sobel RA, Steinman L, Soares MP et al (2007) Heme oxygenase-1 and carbon monoxide suppress autoimmune neuroinflammation. J Clin Investig 117(2):438–447
doi: 10.1172/JCI28844
Dai Y (2004) Proteinase-activated receptor 2-mediated potentiation of transient receptor potential vanilloid subfamily 1 activity reveals a mechanism for proteinase-induced inflammatory pain. J Neurosci 24(18):4293–4299. https://doi.org/10.1523/JNEUROSCI.0454-04.2004
doi: 10.1523/JNEUROSCI.0454-04.2004
pubmed: 15128843
Devesa I, Planells-Cases R, Fernandez-Ballester G, Gonzalez-Ros JM, Ferrer-Montiel A, Fernandez-Carvajal A (2011) Role of the transient receptor potential vanilloid 1 in inflammation and sepsis. J Inflamm Res 4:67–81. https://doi.org/10.2147/JIR.S12978
doi: 10.2147/JIR.S12978
pubmed: 22096371
pmcid: 3218746
Doyle MW, Bailey TW, Jin Y-H, Andresen MC (2002) Vanilloid receptors presynaptically modulate cranial visceral afferent synaptic transmission in nucleus tractus solitarius. J Neurosci 22(18):8222–8229. https://doi.org/10.1523/JNEUROSCI.22-18-08222.2002
doi: 10.1523/JNEUROSCI.22-18-08222.2002
pubmed: 12223576
Duzen IV, Yavuz F, Vuruskan E, Saracoglu E, Poyraz F, Goksuluk H, Demiryurek S et al (2017) Leukocyte TRP channel gene expressions in patients with non-valvular atrial fibrillation. Sci Rep 7(1):9272. https://doi.org/10.1038/s41598-017-10039-0
doi: 10.1038/s41598-017-10039-0
pubmed: 28839241
pmcid: 5571177
Earley S (2010) Vanilloid and melastatin transient receptor potential channels in vascular smooth muscle. Microcirculation. https://doi.org/10.1111/j.1549-8719.2010.00026.x
doi: 10.1111/j.1549-8719.2010.00026.x
pubmed: 20536737
pmcid: 2925403
Entin-Meer M, Cohen L, Hertzberg-Bigelman E, Levy R, Ben-Shoshan J, Keren G (2017) TRPV2 knockout mice demonstrate an improved cardiac performance following myocardial infarction due to attenuated activity of peri-infarct macrophages. PLoS ONE. https://doi.org/10.1371/journal.pone.0177132
doi: 10.1371/journal.pone.0177132
pubmed: 28481959
pmcid: 5421795
Entin-Meer M, Levy R, Goryainov P, Landa N, Barshack I, Avivi C, Keren G et al (2014) The transient receptor potential vanilloid 2 cation channel is abundant in macrophages accumulating at the peri-infarct zone and may enhance their migration capacity towards injured cardiomyocytes following myocardial infarction. PLoS ONE. https://doi.org/10.1371/journal.pone.0105055
doi: 10.1371/journal.pone.0105055
pubmed: 25436994
pmcid: 4249913
Fagone P, Mangano K, Coco M, Perciavalle V, Garotta G, Romao CC, Nicoletti F (2012) Therapeutic potential of carbon monoxide in multiple sclerosis. Clin Exp Immunol 167(2):179–187
doi: 10.1111/j.1365-2249.2011.04491.x
Fagone P, Mangano K, Quattrocchi C, Motterlini R, Di Marco R, Magro G, Penacho N, Romao CC, Nicoletti F (2011) Prevention of clinical and histological signs of proteolipid protein (PLP)-induced experimental allergic encephalomyelitis (EAE) in mice by the water-soluble carbon monoxide-releasing molecule (CORM)-A1. Clin Exp Immunol 163(3):368–374
doi: 10.1111/j.1365-2249.2010.04303.x
Fagone P, Mazzon E, Bramanti P, Bendtzen K, Nicoletti F (2018) Gasotransmitters and the immune system: mode of action and novel therapeutic targets. Eur J Pharmacol 834:92–102
doi: 10.1016/j.ejphar.2018.07.026
Fernandes ES, Liang L, Smillie S-J, Kaiser F, Purcell R, Rivett DW, Brain SD et al (2012) TRPV1 deletion enhances local inflammation and accelerates the onset of systemic inflammatory response syndrome. J Immunol 188(11):5741–5751. https://doi.org/10.4049/jimmunol.1102147
doi: 10.4049/jimmunol.1102147
pubmed: 22547700
Gibson HE, Edwards JG, Page RS, Van Hook MJ, Kauer JA (2008) TRPV1 channels mediate long-term depression at synapses on hippocampal interneurons. Neuron 57(5):746–759. https://doi.org/10.1016/j.neuron.2007.12.027
doi: 10.1016/j.neuron.2007.12.027
pubmed: 18341994
pmcid: 2698707
Goswami C, Schmidt H, Hucho F (2007) TRPV1 at nerve endings regulates growth cone morphology and movement through cytoskeleton reorganization. FEBS J 274(3):760–772. https://doi.org/10.1111/j.1742-4658.2006.05621.x
doi: 10.1111/j.1742-4658.2006.05621.x
pubmed: 17288556
Hassan S, Eldeeb K, Millns PJ, Bennett AJ, Alexander SPH, Kendall DA (2014) Cannabidiol enhances microglial phagocytosis via transient receptor potential (TRP) channel activation. Br J Pharmacol 171(9):2426–2439. https://doi.org/10.1111/bph.12615
doi: 10.1111/bph.12615
pubmed: 24641282
pmcid: 3997281
Hdud IM, El-Shafei AA, Loughna P, Barrett-Jolley R, Mobasheri A (2012) Expression of transient receptor potential vanilloid (TRPV) channels in different passages of articular chondrocytes. Int J Mol Sci 13(4):4433–4445. https://doi.org/10.3390/ijms13044433
doi: 10.3390/ijms13044433
pubmed: 22605988
pmcid: 3344224
Heiner I, Eisfeld J, Halaszovich CR, Wehage E, Jüngling E, Zitt C, Lückhoff A (2003) Expression profile of the transient receptor potential (TRP) family in neutrophil granulocytes: evidence for currents through long TRP channel 2 induced by ADP-ribose and NAD. Biochem J 371(Pt 3):1045–1053. https://doi.org/10.1042/BJ20021975
doi: 10.1042/BJ20021975
pubmed: 12564954
pmcid: 1223343
Heiner I, Eisfeld J, Lückhoff A (2003) Role and regulation of TRP channels in neutrophil granulocytes. Cell Calcium 33(5–6):533–540. https://doi.org/10.1016/S0143-4160(03)00058-7
doi: 10.1016/S0143-4160(03)00058-7
pubmed: 12765698
Helyes Z, Szabó A, Németh J, Jakab B, Pintér E, Bánvölgyi A, Kereskai L, Kéri G, Szolcsányi J (2004) Antiinflammatory and analgesic effects of somatostatin released from capsaicin-sensitive sensory nerve terminals in a Freund’s adjuvant-induced chronic arthritis model in the rat. Arthritis Rheum 50(5):1677–1685
doi: 10.1002/art.20184
Ho KW, Lambert WS, Calkins DJ (2014) Activation of the TRPV1 cation channel contributes to stress-induced astrocyte migration. GLIA 62(9):1435–1451. https://doi.org/10.1002/glia.22691
doi: 10.1002/glia.22691
pubmed: 24838827
pmcid: 4107153
Jara-Oseguera A, Simon SA, Rosenbaum T (2008) TRPV1: on the road to pain relief. Curr Mol Pharmacol 1(3):255–269. https://doi.org/10.2174/1874467210801030255
doi: 10.2174/1874467210801030255
pubmed: 20021438
pmcid: 2802457
Járomi P, Garab D, Hartmann P, Bodnár D, Nyíri S, Sántha P, Szabó A et al (2018) Capsaicin-induced rapid neutrophil leukocyte activation in the rat urinary bladder microcirculatory bed. Neurourol Urodyn 37(2):690–698. https://doi.org/10.1002/nau.23376
doi: 10.1002/nau.23376
pubmed: 28762564
Kim HS, Kwon HJ, Kim GE, Cho MH, Yoon SY, Davies AJ, Kim YK et al (2014) Attenuation of natural killer cell functions by capsaicin through a direct and TRPV1-independent mechanism: capsaicin-induced NK cell dysfunction. Carcinogenesis. https://doi.org/10.1093/carcin/bgu091
doi: 10.1093/carcin/bgu091
pubmed: 25280562
pmcid: 4247523
Lai JP, Douglas SD, Ho WZ (1998) Human lymphocytes express substance P and its receptor. J Neuroimmunol 86(1):80–86. https://doi.org/10.1016/S0165-5728(98)00025-3
doi: 10.1016/S0165-5728(98)00025-3
pubmed: 9655475
Lévêque M, Penna A, Le Trionnaire S, Belleguic C, Desrues B, Brinchault G, Martin-Chouly C et al (2018) Phagocytosis depends on TRPV2-mediated calcium influx and requires TRPV2 in lipids rafts: alteration in macrophages from patients with cystic fibrosis. Sci Rep 8:4310. https://doi.org/10.1038/s41598-018-22558-5
doi: 10.1038/s41598-018-22558-5
pubmed: 29523858
pmcid: 5844937
Liapi A, Wood JN (2005) Extensive co-localization and heteromultimer formation of the vanilloid receptor-like protein TRPV2 and the capsaicin receptor TRPV1 in the adult rat cerebral cortex. Eur J Neurosci 22(4):825–834. https://doi.org/10.1111/j.1460-9568.2005.04270.x
doi: 10.1111/j.1460-9568.2005.04270.x
pubmed: 16115206
Link TM, Park U, Vonakis BM, Raben DM, Soloski MJ, Caterina MJ (2010) TRPV2 has a pivotal role in macrophage particle binding and phagocytosis. Nat Immunol 11(3):232–239. https://doi.org/10.1038/ni.1842
doi: 10.1038/ni.1842
pubmed: 20118928
pmcid: 2840267
Liu B, Qin F (2016) Use dependence of heat sensitivity of vanilloid receptor TRPV2. Biophys J 110(7):1523–1537. https://doi.org/10.1016/j.bpj.2016.03.005
doi: 10.1016/j.bpj.2016.03.005
pubmed: 27074678
pmcid: 4833830
Magierowska K, Wojcik D, Chmura A, Bakalarz D, Wierdak M, Kwiecien S, Sliwowski Z, Brzozowski T, Magierowski M et al (2018) Alterations in gastric mucosal expression of calcitonin gene-related peptides, vanilloid receptors, and heme oxygenase-1 mediate gastroprotective action of carbon monoxide against ethanol-induced gastric mucosal lesions. Int J Mol Sci 19(10):2960. https://doi.org/10.3390/ijms19102960
doi: 10.3390/ijms19102960
pmcid: 6213448
Majhi RK, Sahoo SS, Yadav M, Pratheek BM, Chattopadhyay S, Goswami C (2015) Functional expression of TRPV channels in T cells and their implications in immune regulation. FEBS J 282(14):2661–2681. https://doi.org/10.1111/febs.13306
doi: 10.1111/febs.13306
pubmed: 25903376
Marinelli S, Pascucci T, Bernardi G, Puglisi-Allegra S, Mercuri NB (2005) Activation of TRPVI in the VTA excites dopaminergic neurons and increases chemical- and noxious-induced dopamine release in the nucleus accumbens. Neuropsychopharmacology 30(5):864–870. https://doi.org/10.1038/sj.npp.1300615
doi: 10.1038/sj.npp.1300615
pubmed: 15562294
Marsch R, Foeller E, Rammes G, Bunck M, Kossl M, Holsboer F, Wotjak CT et al (2007) Reduced anxiety, conditioned fear, and hippocampal long-term potentiation in transient receptor potential vanilloid type 1 receptor-deficient mice. J Neurosci 27(4):832–839. https://doi.org/10.1523/JNEUROSCI.3303-06.2007
doi: 10.1523/JNEUROSCI.3303-06.2007
pubmed: 17251423
Mazzone SB, Geraghty DP (2000) Respiratory actions of tachykinins in the nucleus of the solitary tract: effect of neonatal capsaicin pretreatment. Br J Pharmacol 129(6):1132–1139
doi: 10.1038/sj.bjp.0703173
McNamara FN, Randall A, Gunthorpe MJ (2005) Effects of piperine, the pungent component of black pepper, at the human vanilloid receptor (TRPV1). Br J Pharmacol 144(6):781–790. https://doi.org/10.1038/sj.bjp.0706040
doi: 10.1038/sj.bjp.0706040
pubmed: 15685214
pmcid: 1576058
Medvedeva YV, Kim M-S, Usachev YM (2008) Mechanisms of prolonged presynaptic Ca
doi: 10.1523/JNEUROSCI.4810-07.2008
pubmed: 18480286
pmcid: 2694046
Mikami N, Matsushita H, Kato T, Kawasaki R, Sawazaki T, Kishimoto T, Tsujikawa K et al (2011) Calcitonin gene-related peptide is an important regulator of cutaneous immunity: effect on dendritic cell and T cell functions. J Immunol 186(12):6886–6893. https://doi.org/10.4049/jimmunol.1100028
doi: 10.4049/jimmunol.1100028
pubmed: 21551361
Miyake T, Shirakawa H, Nakagawa T, Kaneko S (2015) Activation of mitochondrial transient receptor potential vanilloid 1 channel contributes to microglial migration. GLIA 63(10):1870–1882. https://doi.org/10.1002/glia.22854
doi: 10.1002/glia.22854
pubmed: 26010461
Mohammed M, Madden CJ, Andresen MC, Morrison SF (2018) Activation of TRPV1 in nucleus tractus solitarius reduces brown adipose tissue thermogenesis, arterial pressure and heart rate. Am J Physiol-Regul Integr Comp Physiol. https://doi.org/10.1152/ajpregu.00049.2018
doi: 10.1152/ajpregu.00049.2018
pubmed: 29897823
pmcid: 6087884
Murai M, Tsuji F, Nose M, Seki I, Oki K, Setoguchi C, Aono H et al (2008) SA13353 (1-[2-(1-Adamantyl)ethyl]-1-pentyl-3-[3-(4-pyridyl)propyl]urea) inhibits TNF-α production through the activation of capsaicin-sensitive afferent neurons mediated via transient receptor potential vanilloid 1 in vivo. Eur J Pharmacol 588(2–3):309–315. https://doi.org/10.1016/j.ejphar.2008.04.037
doi: 10.1016/j.ejphar.2008.04.037
pubmed: 18508045
Nagasawa M, Nakagawa Y, Tanaka S, Kojima I (2007) Chemotactic peptide fMetLeuPhe induces translocation of the TRPV2 channel in macrophages. J Cell Physiol 210(3):692–702. https://doi.org/10.1002/jcp.20883
doi: 10.1002/jcp.20883
pubmed: 17154364
Nam JH, Park ES, Won SY, Lee YA, Kim KI, Jeong JY, Jin BK et al (2015) TRPV1 on astrocytes rescues nigral dopamine neurons in Parkinson’s disease via CNTF. Brain 138(12):3610–3622. https://doi.org/10.1093/brain/awv297
doi: 10.1093/brain/awv297
pubmed: 26490328
pmcid: 4840550
Nathan C (2006) Neutrophils and immunity: challenges and opportunities. Nat Rev Immunol. https://doi.org/10.1038/nri1785
doi: 10.1038/nri1785
pubmed: 16498448
Nevius E, Srivastava PK, Basu S (2011) Oral ingestion of capsaicin, the pungent component of chili pepper, enhances a discreet population of macrophages and confers protection from autoimmune diabetes. Mucosal Immunol 5(1):76–86. https://doi.org/10.1038/mi.2011.50
doi: 10.1038/mi.2011.50
pubmed: 22113584
Nicoletti F, Mancuso G, Cusumano V, Marco RD, Zaccone P, Bendtzen K, Teti G (1997) Prevention of endotoxin-induced lethality in neonatal mice by interleukin-13. Eur J Immunol 27(6):1580–1583. https://doi.org/10.1002/eji.1830270639
doi: 10.1002/eji.1830270639
pubmed: 9209514
Nikolic I, Saksida T, Mangano K, Vujicic M, Stojanovic I, Nicoletti F, Stosic-Grujicic S (2014) Pharmacological application of carbon monoxide ameliorates islet-directed autoimmunity in mice via anti-inflammatory and anti-apoptotic effects. Diabetologia 57(5):980–990. https://doi.org/10.1007/s00125-014-3170-7
doi: 10.1007/s00125-014-3170-7
pubmed: 24488023
Ninomiya Y, Tanuma SI, Tsukimoto M (2017) Differences in the effects of four TRPV1 channel antagonists on lipopolysaccharide-induced cytokine production and COX-2 expression in murine macrophages. Biochem Biophys Res Commun 484(3):668–674. https://doi.org/10.1016/j.bbrc.2017.01.173
doi: 10.1016/j.bbrc.2017.01.173
pubmed: 28153725
Omari SA, Adams MJ, Geraghty DP (2017) TRPV1 channels in immune cells and hematological malignancies. Adv Pharmacol 79:173–198. https://doi.org/10.1016/bs.apha.2017.01.002
doi: 10.1016/bs.apha.2017.01.002
pubmed: 28528668
Parenti A, De Logu F, Geppetti P, Benemei S (2016) What is the evidence for the role of TRP channels in inflammatory and immune cells? Br J Pharmacol 173(6):953–969. https://doi.org/10.1111/bph.13392
doi: 10.1111/bph.13392
pubmed: 26603538
pmcid: 5341240
Park KS, Pang B, Park SJ, Lee Y-G, Bae J-Y, Park S, Kim SJ et al (2011) Identification and functional characterization of ion channels in CD3
doi: 10.1007/s10059-011-0068-9
pubmed: 21638203
pmcid: 3887668
Perálvarez-Marín A, Doñate-Macian P, Gaudet R (2013) What do we know about the transient receptor potential vanilloid 2 (TRPV2) ion channel? FEBS J 280:5471–5487. https://doi.org/10.1111/febs.12302
doi: 10.1111/febs.12302
pubmed: 23615321
pmcid: 3783526
Ray A, Vasudevan S, Sengupta S (2015) 6-Shogaol inhibits breast cancer cells and stem cell-like spheroids by modulation of notch signaling pathway and induction of autophagic cell death. PLoS ONE 10(9):e0137614. https://doi.org/10.1371/journal.pone.0137614
doi: 10.1371/journal.pone.0137614
pubmed: 26355461
pmcid: 4565635
Rehman R, Bhat YA, Panda L, Mabalirajan U (2013) TRPV1 inhibition attenuates IL-13 mediated asthma features in mice by reducing airway epithelial injury. Int Immunopharmacol 15(3):597–605. https://doi.org/10.1016/j.intimp.2013.02.010
doi: 10.1016/j.intimp.2013.02.010
pubmed: 23453702
Roberts JC, Davis JB, Benham CD (2004) [3H]Resiniferatoxin autoradiography in the CNS of wild-type and TRPV1 null mice defines TRPV1 (VR-1) protein distribution. Brain Res 995(2):176–183. https://doi.org/10.1016/j.brainres.2003.10.001
doi: 10.1016/j.brainres.2003.10.001
pubmed: 14672807
Rochlitzer S, Veres TZ, Kühne K, Prenzler F, Pilzner C, Knothe S, Braun A et al (2011) The neuropeptide calcitonin gene-related peptide affects allergic airway inflammation by modulating dendritic cell function. Clin Exp Allergy 41(11):1609–1621. https://doi.org/10.1111/j.1365-2222.2011.03822.x
doi: 10.1111/j.1365-2222.2011.03822.x
pubmed: 21752117
Rodrigues T, Sieglitz F, Bernardes GJL (2016) Natural product modulators of transient receptor potential (TRP) channels as potential anti-cancer agents. Chem Soc Rev 45(22):6130–6137. https://doi.org/10.1039/C5CS00916B
doi: 10.1039/C5CS00916B
pubmed: 26890476
Samivel R, Kim DW, Son HR, Rhee YH, Kim EH, Kim JH, Mo JH et al (2016) The role of TRPV1 in the CD
doi: 10.18632/oncotarget.6653
pubmed: 26700618
Santoni G, Farfariello V, Liberati S, Morelli MB, Nabissi M, Santoni M, Amantini C (2013) The role of transient receptor potential vanilloid type-2 ion channels in innate and adaptive immune responses. Front Immunol 4:34. https://doi.org/10.3389/fimmu.2013.00034
doi: 10.3389/fimmu.2013.00034
pubmed: 23420671
pmcid: 3572502
Sauer K, Jegla TJ (2006) Methods for identifying T cell activation modulating compounds
Saunders CI, Kunde DA, Crawford A, Geraghty DP (2007) Expression of transient receptor potential vanilloid 1 (TRPV1) and 2 (TRPV2) in human peripheral blood. Mol Immunol 44(6):1429–1435. https://doi.org/10.1016/j.molimm.2006.04.027
doi: 10.1016/j.molimm.2006.04.027
pubmed: 16777226
Schain AJ, Melo-Carrillo A, Borsook D, Grutzendler J, Strassman AM, Burstein R (2018) Activation of pial and dural macrophages and dendritic cells by cortical spreading depression. Ann Neurol 83(3):508–521. https://doi.org/10.1002/ana.25169
doi: 10.1002/ana.25169
pubmed: 29394508
pmcid: 5965700
Schraml BU, Reis e Sousa C (2015) Defining dendritic cells. Curr Opin Immunol 32:13–20. https://doi.org/10.1016/j.coi.2014.11.001
doi: 10.1016/j.coi.2014.11.001
pubmed: 25553392
Shibasaki K, Ishizaki Y, Mandadi S (2013) Astrocytes express functional TRPV2 ion channels. Biochem Biophys Res Commun 441(2):327–332. https://doi.org/10.1016/j.bbrc.2013.10.046
doi: 10.1016/j.bbrc.2013.10.046
pubmed: 24161738
Shibasaki K, Murayama N, Ono K, Ishizaki Y, Tominaga M (2010) TRPV2 enhances axon outgrowth through its activation by membrane stretch in developing sensory and motor neurons. J Neurosci 30(13):4601–4612. https://doi.org/10.1523/JNEUROSCI.5830-09.2010
doi: 10.1523/JNEUROSCI.5830-09.2010
pubmed: 20357111
pmcid: 6632311
Shimosato G, Amaya F, Ueda M, Tanaka Y, Decosterd I, Tanaka M (2005) Peripheral inflammation induces up-regulation of TRPV2 expression in rat DRG. Pain 119(1–3):225–232. https://doi.org/10.1016/j.pain.2005.10.002
doi: 10.1016/j.pain.2005.10.002
pubmed: 16298071
Simeoli R, Montague K, Jones HR, Castaldi L, Chambers D, Kelleher JH, Malcangio M et al (2017) Exosomal cargo including microRNA regulates sensory neuron to macrophage communication after nerve trauma. Nat Commun. https://doi.org/10.1038/s41467-017-01841-5
doi: 10.1038/s41467-017-01841-5
pubmed: 29176651
pmcid: 5701122
Singer EM, Shin DB, Nattkemper LA, Benoit BM, Klein RS, Didigu CA, Rook AH et al (2013) IL-31 is produced by the malignant T-Cell population in cutaneous T-Cell lymphoma and correlates with CTCL Pruritus. J Investig Dermatol 133(12):2783–2785. https://doi.org/10.1038/jid.2013.227
doi: 10.1038/jid.2013.227
pubmed: 23698099
Solís-López A, Kriebs U, Marx A, Mannebach S, Liedtke WB, Caterina MJ, Tsvilovskyy VV et al (2017) Analysis of TRPV channel activation by stimulation of FCεRI and MRGPR receptors in mouse peritoneal mast cells. PLoS ONE. https://doi.org/10.1371/journal.pone.0171366
doi: 10.1371/journal.pone.0171366
pubmed: 28158279
pmcid: 5291405
Stock K, Garthe A, De Almeida Sassi F, Glass R, Wolf SA, Kettenmann H (2014) The capsaicin receptor TRPV1 as a novel modulator of neural precursor cell proliferation. Stem Cells 32(12):3183–3195. https://doi.org/10.1002/stem.1805
doi: 10.1002/stem.1805
pubmed: 25092424
Szöllősi AG, Oláh A, Tóth IB, Papp F, Czifra G, Panyi G, Bíró T (2013) Transient receptor potential vanilloid-2 mediates the effects of transient heat shock on endocytosis of human monocyte-derived dendritic cells. FEBS Lett 587(9):1440–1445. https://doi.org/10.1016/j.febslet.2013.03.027
doi: 10.1016/j.febslet.2013.03.027
pubmed: 23542034
Takayama Y, Uta D, Furue H, Tominaga M (2015) Pain-enhancing mechanism through interaction between TRPV1 and anoctamin 1 in sensory neurons. Proc Natl Acad Sci 112(16):5213–5218. https://doi.org/10.1073/pnas.1421507112
doi: 10.1073/pnas.1421507112
pubmed: 25848051
Talbot S, Foster SL, Woolf CJ (2016) Neuroimmunity: physiology and pathology. Annu Rev Immunol 34(1):421–447. https://doi.org/10.1146/annurev-immunol-041015-055340
doi: 10.1146/annurev-immunol-041015-055340
pubmed: 26907213
Tóth BI, Benkő S, Szöllősi AG, Kovács L, Rajnavölgyi É, Bíró T (2009) Transient receptor potential vanilloid-1 signaling inhibits differentiation and activation of human dendritic cells. FEBS Lett 583(10):1619–1624. https://doi.org/10.1016/j.febslet.2009.04.031
doi: 10.1016/j.febslet.2009.04.031
pubmed: 19397909
Tsou M-F, Lu H-F, Chen S-C, Wu L-T, Chen Y-S, Kuo H-M, Chung J-G et al (2006) Involvement of Bax, Bcl-2, Ca
pubmed: 16827131
Tsuji F, Murai M, Oki K, Seki I, Ueda K, Inoue H, Aono H et al (2010) Transient receptor potential vanilloid 1 agonists as candidates for anti-inflammatory and immunomodulatory agents. Eur J Pharmacol 627(1–3):332–339. https://doi.org/10.1016/j.ejphar.2009.10.044
doi: 10.1016/j.ejphar.2009.10.044
pubmed: 19878665
Venkatachalam K, Montell C (2007) TRP channels. Annu Rev Biochem 76(1):387–417. https://doi.org/10.1146/annurev.biochem.75.103004.142819
doi: 10.1146/annurev.biochem.75.103004.142819
pubmed: 17579562
pmcid: 4196875
Voedisch S, Rochlitzer S, Veres TZ, Spies E, Braun A (2012) Neuropeptides control the dynamic behavior of airway mucosal dendritic cells. PLoS ONE 7(9):e45951. https://doi.org/10.1371/journal.pone.0045951
doi: 10.1371/journal.pone.0045951
pubmed: 23049899
pmcid: 3458805
Wainger BJ, Buttermore ED, Oliveira JT, Mellin C, Lee S, Saber WA, Woolf CJ et al (2015) Modeling pain in vitro using nociceptor neurons reprogrammed from fibroblasts. Nat Neurosci 18(1):17–24. https://doi.org/10.1038/nn.3886
doi: 10.1038/nn.3886
pubmed: 25420066
Walpole CSJ, Wrigglesworth R (1993) Structural requirements for capsaicin agonists and antagonists. In: Wood JN (ed) Capsaicin in the study of pain. Academic Press, London, pp 63–81
Wang SE, Ko SY, Kim Y-S, Jo S, Lee SH, Jung SJ, Son H (2018) Capsaicin upregulates HDAC2 via TRPV1 and impairs neuronal maturation in mice. Exp Mol Med 50(3):e455. https://doi.org/10.1038/emm.2017.289
doi: 10.1038/emm.2017.289
pubmed: 29520110
pmcid: 5898893
Wu TTL, Peters AA, Tan PT, Roberts-Thomson SJ, Monteith GR (2014) Consequences of activating the calcium-permeable ion channel TRPV1 in breast cancer cells with regulated TRPV1 expression. Cell Calcium 56(2):59–67. https://doi.org/10.1016/j.ceca.2014.04.006
doi: 10.1016/j.ceca.2014.04.006
pubmed: 24889371
Yaffe PB, Coombs PMR, Doucette CD, Walsh M, Hoskin DW (2015) Piperine, an alkaloid from black pepper, inhibits growth of human colon cancer cells via G1 arrest and apoptosis triggered by endoplasmic reticulum stress. Mol Carcinog 54(10):1070–1085. https://doi.org/10.1002/mc.22176
doi: 10.1002/mc.22176
pubmed: 24819444
Yamashiro K, Sasano T, Tojo K, Namekata I, Kurokawa J, Sawada N, Furukawa T et al (2010) Role of transient receptor potential vanilloid 2 in LPS-induced cytokine production in macrophages. Biochem Biophys Res Commun 398(2):284–289
doi: 10.1016/j.bbrc.2010.06.082
Yang F, Zheng J (2017) Understand spiciness: mechanism of TRPV1 channel activation by capsaicin. Protein Cell 8(3):169–177. https://doi.org/10.1007/s13238-016-0353-7
doi: 10.1007/s13238-016-0353-7
pubmed: 28044278
pmcid: 5326624
Zhang D, Spielmann A, Wang L, Ding G, Huang F, Gu Q, Schwarz W (2012) Mast-cell degranulation induced by physical stimuli involves the activation of transient-receptor-potential channel TRPV2. Physiol Res 61(1):113–124
pubmed: 21574765
Zhang H, Xiao J, Hu Z, Xie M, Wang W, He D (2016) Blocking transient receptor potential vanilloid 2 channel in astrocytes enhances astrocyte-mediated neuroprotection after oxygen–glucose deprivation and reoxygenation. Eur J Neurosci 44(7):2493–2503. https://doi.org/10.1111/ejn.13352
doi: 10.1111/ejn.13352
pubmed: 27468746
Zhao J, Gover TD, Muralidharan S, Auston DA, Weinreich D, Kao JPY (2006) Caged vanilloid ligands for activation of TRPV1 receptors by 1- and 2-photon excitation. Biochemistry 45(15):4915–4926. https://doi.org/10.1021/bi052082f
doi: 10.1021/bi052082f
pubmed: 16605259
pmcid: 2536571
Zhen X, Xie C, Jiang Y, Ai X, Xing B, Pu K (2018) Semiconducting photothermal nanoagonist for remote-controlled specific cancer therapy. Nano Lett 18(2):1498–1505. https://doi.org/10.1021/acs.nanolett.7b05292
doi: 10.1021/acs.nanolett.7b05292
pubmed: 29342359