Effects of Antibiotic Cycling Policy on Incidence of Healthcare-Associated MRSA and Clostridioides difficile Infection in Secondary Healthcare Settings.
Amoxicillin-Potassium Clavulanate Combination
/ therapeutic use
Anti-Bacterial Agents
/ therapeutic use
Antimicrobial Stewardship
/ legislation & jurisprudence
Clostridioides difficile
/ drug effects
Clostridium Infections
/ epidemiology
Cross Infection
/ epidemiology
Drug Resistance, Bacterial
Hospitals
Humans
Incidence
Methicillin-Resistant Staphylococcus aureus
/ drug effects
Northern Ireland
/ epidemiology
Staphylococcal Infections
/ epidemiology
beta-Lactamases
/ metabolism
CDI
Clostridioides difficile
Clostridium difficile
ESBL
Ireland
MRSA
antibiotic cycling
antimicrobial drug resistance
bacteria
extended-spectrum β-lactamase
healthcare-acquired infections
methicillin-resistant Staphylococcus aureus
nosocomial infections
Journal
Emerging infectious diseases
ISSN: 1080-6059
Titre abrégé: Emerg Infect Dis
Pays: United States
ID NLM: 9508155
Informations de publication
Date de publication:
01 2019
01 2019
Historique:
entrez:
19
12
2018
pubmed:
19
12
2018
medline:
16
7
2019
Statut:
ppublish
Résumé
This quasi-experimental study investigated the effect of an antibiotic cycling policy based on time-series analysis of epidemiologic data, which identified antimicrobial drugs and time periods for restriction. Cyclical restrictions of amoxicillin/clavulanic acid, piperacillin/tazobactam, and clarithromycin were undertaken over a 2-year period in the intervention hospital. We used segmented regression analysis to compare the effect on the incidence of healthcare-associated Clostridioides difficile infection (HA-CDI), healthcare-associated methicillin-resistant Staphylococcus aureus (HA-MRSA), and new extended-spectrum β-lactamase (ESBL) isolates and on changes in resistance patterns of the HA-MRSA and ESBL organisms between the intervention and control hospitals. HA-CDI incidence did not change. HA-MRSA incidence increased significantly in the intervention hospital. The resistance of new ESBL isolates to amoxicillin/clavulanic acid and piperacillin/tazobactam decreased significantly in the intervention hospital; however, resistance to piperacillin/tazobactam increased after a return to the standard policy. The results question the value of antibiotic cycling to antibiotic stewardship.
Identifiants
pubmed: 30561306
doi: 10.3201/eid2501.180111
pmc: PMC6302607
doi:
Substances chimiques
Anti-Bacterial Agents
0
Amoxicillin-Potassium Clavulanate Combination
74469-00-4
beta-Lactamases
EC 3.5.2.6
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
52-62Références
Clin Infect Dis. 2014 Jul 15;59(2):206-15
pubmed: 24729496
Arch Intern Med. 2008 Sep 22;168(17):1897-902
pubmed: 18809817
J Surg Res. 2012 Aug;176(2):e73-8
pubmed: 22445457
J Antimicrob Chemother. 2011 Sep;66(9):2168-74
pubmed: 21676904
J Antimicrob Chemother. 2006 Jun;57(6):1262-3
pubmed: 16565157
J Antimicrob Chemother. 2006 Jun;57(6):1197-204
pubmed: 16565158
Clin Microbiol Infect. 2009 Dec;15(12):1053-66
pubmed: 19929972
Int J Antimicrob Agents. 2015 Mar;45(3):262-7
pubmed: 25554468
Epidemiol Infect. 2014 Mar;142(3):494-500
pubmed: 23735079
J Antimicrob Chemother. 2006 Oct;58(4):878-81
pubmed: 16921183
Int J Antimicrob Agents. 2004 Oct;24(4):339-45
pubmed: 15380258
J Antimicrob Chemother. 2013 Nov;68(11):2421-3
pubmed: 24027247
Lancet Infect Dis. 2015 Apr;15(4):475-85
pubmed: 25716293
Clin Infect Dis. 2012 Jan 15;54(2):167-74
pubmed: 22057701
Crit Care Med. 2003 Jul;31(7):1908-14
pubmed: 12847382
Bone Marrow Transplant. 2007 Jul;40(2):151-5
pubmed: 17530005
J Antimicrob Chemother. 2007 Aug;60 Suppl 1:i5-7
pubmed: 17656382
Am J Med. 2008 Apr;121(4):310-5
pubmed: 18374690
Int J Antimicrob Agents. 2014 Apr;43(4):319-22
pubmed: 24630303
J Antimicrob Chemother. 2008 Sep;62(3):593-600
pubmed: 18467307
Ann N Y Acad Sci. 2010 Dec;1213:81-91
pubmed: 21175677
Crit Care Med. 2006 Feb;34(2):329-36
pubmed: 16424711
PLoS One. 2013;8(1):e54190
pubmed: 23372683
J Antimicrob Chemother. 2012 Dec;67(12):2793-803
pubmed: 22915465
PLoS One. 2012;7(6):e38719
pubmed: 22761698
J Antimicrob Chemother. 2008 Sep;62(3):601-7
pubmed: 18468995
Lancet Infect Dis. 2007 Apr;7(4):282-8
pubmed: 17376385
J Chronic Dis. 1987;40(5):373-83
pubmed: 3558716
Chest. 2011 Sep;140(3):643-651
pubmed: 21659436
Int J Antimicrob Agents. 2010 Nov;36 Suppl 3:S15-8
pubmed: 21129627
J Antimicrob Chemother. 2016 May;71(5):1408-14
pubmed: 26869693
Infect Control Hosp Epidemiol. 2015 Nov;36(11):1292-7
pubmed: 26289065
Clin Infect Dis. 2001 Jul 15;33(2):151-7
pubmed: 11418873
BMJ. 2012 May 03;344:e3005
pubmed: 22556101
World J Surg. 2006 Jul;30(7):1269-76
pubmed: 16705389
Infect Control Hosp Epidemiol. 2011 Mar;32(3):210-9
pubmed: 21460505
PLoS Pathog. 2014 Jun 26;10(6):e1004225
pubmed: 24968123
Intensive Care Med. 2010 Mar;36(3):512-9
pubmed: 19921150
Pediatrics. 2002 Oct;110(4):707-11
pubmed: 12359783
PLoS One. 2013;8(1):e53674
pubmed: 23326483
Am J Respir Crit Care Med. 2000 Sep;162(3 Pt 1):837-43
pubmed: 10988092
Br J Clin Pharmacol. 2012 Jul;74(1):171-9
pubmed: 22150975
Infect Control Hosp Epidemiol. 2008 Oct;29(10):901-13
pubmed: 18808340
J Hosp Infect. 2012 Nov;82(3):164-9
pubmed: 22980491