BMA-Mod: A Bayesian model averaging strategy for determining dose-response relationships in the presence of model uncertainty.
Bayesian model averaging
MCMC
likelihood principle
nonnormal distributions
predictive distributions
Journal
Biometrical journal. Biometrische Zeitschrift
ISSN: 1521-4036
Titre abrégé: Biom J
Pays: Germany
ID NLM: 7708048
Informations de publication
Date de publication:
09 2019
09 2019
Historique:
received:
26
10
2017
revised:
30
08
2018
accepted:
14
11
2018
pubmed:
20
12
2018
medline:
9
4
2020
entrez:
20
12
2018
Statut:
ppublish
Résumé
Successful pharmaceutical drug development requires finding correct doses. The issues that conventional dose-response analyses consider, namely whether responses are related to doses, which doses have responses differing from a control dose response, the functional form of a dose-response relationship, and the dose(s) to carry forward, do not need to be addressed simultaneously. Determining if a dose-response relationship exists, regardless of its functional form, and then identifying a range of doses to study further may be a more efficient strategy. This article describes a novel estimation-focused Bayesian approach (BMA-Mod) for carrying out the analyses when the actual dose-response function is unknown. Realizations from Bayesian analyses of linear, generalized linear, and nonlinear regression models that may include random effects and covariates other than dose are optimally combined to produce distributions of important secondary quantities, including test-control differences, predictive distributions of possible outcomes from future trials, and ranges of doses corresponding to target outcomes. The objective is similar to the objective of the hypothesis-testing based MCP-Mod approach, but provides more model and distributional flexibility and does not require testing hypotheses or adjusting for multiple comparisons. A number of examples illustrate the application of the method.
Identifiants
pubmed: 30565273
doi: 10.1002/bimj.201700211
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
1141-1159Informations de copyright
© 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Références
Ando, T. (2008). Bayesian model averaging and Bayesian predictive information criterion for model selection. Journal of the Japan Statistical Society, 38, 243-257.
Ando, T., & Tsay, R. (2010). Predictive likelihood for Bayesian model selection and averaging. International Journal of Forecasting, 26, 744-763.
Bailer, A. J., Noble, R. B., & Wheeler, M. W. (2005). Model uncertainty and risk estimation for experimental studies of quantal responses. Risk Analysis, 25, 291-299.
Barker, R. J., & Link, W. A. (2013). Bayesian multimodel inference by RJMCMC: A Gibbs sampling approach. American Statistician, 67, 150-156.
Biesheuvel, E., & Hothorn, L. A. (2002). Many-to-one comparisons in stratified designs. Biometrical Journal, 44, 101-116.
Bornkamp, B. (2015). Viewpoint: Model selection uncertainty, pre-specification, and model averaging. Pharmaceutical Statistics, 14, 79-81.
Bornkamp, B., Bretz, F., Dette, H., & Pinheiro, J. (2011). Response-adaptive dose-finding under model uncertainty. Annals of Applied Statistics, 5, 1611-1631.
Bornkamp, B., Pinheiro, J., & Bretz, F. (2009). MCPMod: An R package for the design and analysis of dose-finding studies. Journal of Statistical Software, 29, 1-23.
Breiman, L. (1996). Heuristics of instability and stabilization in model selection. Annals of Statistics, 24, 2350-2383.
Bretz, F., Hsu, J., Pinheiro, J., & Liu, Y. (2008). Dose finding: A challenge in statistics. Biometrical Journal, 50, 480-504.
Bretz, F., Pinheiro, J., & Branson, M. (2005). Combining multiple comparisons and modeling techniques in dose-response studies. Biometrics, 61, 738-748.
Brezger, A., & Steiner, W. J. (2008). Monotonic regression based on Bayesian P-splines: An application to estimating price response functions from store-level scanner data. Journal of Business & Economic Statistics, 26, 90-104.
Buerkner, P.-C. (2017). brms: An R package for Bayesian multilevel models using Stan. Journal of Satistical Software, 80, 1-28.
Chevret, S. (2006). Statistical methods for dose finding experiments. Chichester, UK: Wiley.
Clyde, M. A., & George, E. I. (2004). Model uncertainty. Statistical Science, 19, 81-94.
Crainiceanu, C. M., Ruppert, D., & Wand, M. P. (2005). Bayesian analysis for penalized spline regression using WinBUGS. Journal of Statistical Software, 14, 1-24.
Dette, H., Titoff, S., Volgushev, S., & Bretz, F. (2015). Dose response signal detection under model uncertainty. Biometrics, 71, 996-1008.
Dong, Y., Xu, Y., Li, H., & Dai, M. (2008). A comparative study of the numerical scales and the prioritization methods in AHP. European Journal of Operational Research, 186, 229-242.
Eklund, J., & Karlsson, S. (2005). Forecast combination and model averaging using predictive measures. Sveriges Riksbank Working Paper Series, 26, 329-363.
European Medicines Agency Evaluation of Medicines for Human Use 2008 Assessment report for Vimpat.Doc.Ref.:EMEA/460925/2008. http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Public_assessment_report/human/000863/WC500050341.pdf.
Faes, C., Aerts, M., Heys, H., & Molenberghs, G. (2007). Model averaging using fractional polynomials to estimate a safe level of exposure. Risk Analysis, 27, 111-123.
Garthwaite, P. H., Critchley, F., Anaya-Izquierdo, K., & Mubwandarikwa, E. (2012). Orthogonalization of vectors with minimal adjustment. Biometrika, 99, 787-798.
Garthwaite, P. H., & Mubwandarikwa, E. (2010). Selection of weights for weighted model averaging. Australian & New Zealand Journal of Statistics, 52, 363-382.
Gelman, A., Hwang, J., & Vehtari, A. (2014). Understanding predictive information criteria for Bayesian models. Statistical Computing, 24, 997-1016.
Gould, A. L., Koglin, J., Bain, R. P., Pinto, C.-A., Mitchel, Y. B., Pasternak, R. C., & Sapre, A. (2009). Effects of sources of variability on sample sizes required for RCTs, applied to trials of lipid-altering therapies on carotid artery intima-media thickness. Clinical Trials, 6, 305-319.
Green, P. J. (1995). Reversible jump Markov Chain Monte Carlo computation and Bayesian model determination. Biometrika, 82, 711-732.
Gutjahr, G., & Bornkamp, B. (2017). Likelihood ratio tests for a dose-response effect using multiple nonlinear regression models. Biometrics, 73, 197-205.
Haaland, B., & Chiang, A. Y. (2014). Bayesian semiparametric predictive modeling with applications in dose-response prediction. Journal of Biopharmaceutical Statistics, 24, 294-309.
Han, C., & Carlin, B. P. (2001). Markov Chain Monte Carlo methods for computing Bayes factors: A comparative review. Journal of the American Statistical Association, 96, 1122-1132.
Helms, H. J., Benda, N., Zinserling, J., Kneib, T., & Friede, T. (2015). Spline-based procedures for dose-finding studies with active control. Statistics in Medicine, 34, 232-248.
Hoeting, J., Madigan, D., Raftery, A. E., & Volinsky, C. T. (1999). Bayesian model averaging: A tutorial. Statistical Science, 14, 382-417.
Klingenberg, B. (2009). Proof of concept and dose estimation with binary responses under model uncertainty. Statistics in Medicine, 28, 274-292.
Krishna, R. (2006). Dose optimization in drug development. New York: Informa Health Care.
Lauer, S., Timmer, J., van Calker, D., Maier, D., & Honerkamp, J. (1997). Optimal weighted Bayesian design applied to dose-response-curve analysis. Communications in Statistics: Theory and Methods, 26, 2879-2903.
Li, J., Nordheim, E. V., Zhang, C., & Lehner, C. E. (2008). Estimation and confidence regions for multi-dimensional effective dose. Biometrical Journal, 50, 110-122.
Li, W., & Fu, H. (2016). Bayesian isotonic regression dose-response model. Journal of Biopharmaceutical Statistics, 27, 824-833.
Link, W. A., & Albers, P. H. (2007). Bayesian multimodel inference for dose-response studies. Environmental Toxicology and Chemistry, 26, 1867-1872.
Liu, W., Zhou, S., & Bretz, F. (2014). Exact simultaneous confidence bands for quadratic and cubic polynomial regression with applications in dose response study. Australian & New Zealand Journal of Statistics, 55, 421-434.
Merlé, Y., & Mentré, F. (1995). Bayesian design criteria: Computation, comparison, and application to a pharmacokinetic and a pharmacodynamic model. Journal of Pharmacokinetics and Biopharmaceutics, 23, 101-125.
Morales, K. H., Ibrahim, J. G., Chen, C. J., & Ryan, L. (2006). Bayesian model averaging with applications to benchmark dose estimation for arsenic in drinking water. Journal of the American Statistical Association, 101, 9-17.
Ohlssen, D., & Racine, A. (2015). A flexible Bayesian approach for modeling monotonic dose-response relationships in drug development trials. Journal of Biopharmaceutical Statistics, 25, 137-156.
Piironen, J., & Vehtari, A. (2017). Comparison of Bayesian predictive methods for model selection. Statistical Computing, 27, 711-735.
Pinheiro, J., Bornkamp, B., & Bretz, F. (2006). Design and analysis of dose-finding studies combining multiple comparisons and modeling procedures. Journal of Biopharmaceutical Statistics, 16, 639-656.
Pinheiro, J., Bornkamp, B., Glimm, E., & Bretz, F. (2014). Model-based dose finding under model uncertainty using general parametric models. Statistics in Medicine, 33, 1646-1661.
Plummer, M. (2015). (10-2-2015) JAGS-MCMC version 4.2.0. Retrieved from https://sourceforge.net/projects/mcmc-jags/
R Core Team (2017). R: A language and environment for statistical computing. Retrieved from https://www.R-project.org/
Raftery, A. E., & Zheng, Y. (2003). Discussion: Performance of Bayesian model averaging. Journal of the American Statistical Association, 98, 931-938.
Ritz, C., Baty, F., Streibig, J. C., & Gerhard, D. (2015). Dose-response analysis using R. Plos One, 10, e0146021.
Royston, P., & Altman, D. G. (1994). Regression using fractional polynomials of continuous covariates: Parsimonious parametric modelling. Applied Statistics, 43, 429-467.
Ruberg, S. J. (1995). Dose response studies II. Analysis and interpretation. Journal of Biopharmaceutical Statistics, 5, 15-42.
Saaty, T. L. (1980). The analytic hierarchy process. New York: McGraw Hill.
Saaty, T. L. (1994). Fundamentals of decision making and priority theory. Pittsburgh, PA: RWS Publications.
Saaty, T. L. (2008). Relative measurement and its generalization in decision making. Revista de la Real Academia de Ciencias Exactas Serie A Matemáticas, 102, 251-318.
Saaty, T. L., & Vargas, L. G. (1987). The analytic hierarchy process-Theoretical developments and some applications. Mathematical Modelling, 9, 161-395.
Schorning, K., Bornkamp, B., Bretz, F., & Dette, H. (2016). Model selection versus model averaging in dose finding studies. Statistics in Medicine, 35, 4021-4040.
Smith, M., & Marshall, S. (2006). A Bayesian design and analysis for dose-response using informative prior information. Journal of Biopharmaceutical Statistics, 16, 695-709.
Stan Development Team (2017). RStan: The R interface to Stan, Version 2.16.2. Stan Development Team, Retrieved from http://mc-stan.org Accessed 3-30-2016.
Thomas, N. (2006). Hypothesis testing and Bayesian estimation using a sigmoid E Max model applied to sparse dose-response designs. Journal of Biopharmaceutical Statistics, 16, 657-677.
Ting, N. (2006). Dose finding in drug development. New York: Springer.
Ting, N. (2008). Confirm and explore: A stepwise approach to clinical study designs. Drug Information Journal, 42, 545-554.
Turkheimer, F. E., Hinz, R., & Cunningham, V. J. (2003). On the undecidability among kinetic models: From model selection to model averaging. Journal of Cerebral Blood Flow and Metabolism, 23, 490-498.
Vehtari, A., Gelman, A., & Gabry, J. (2017). Practical Bayesian model evaluation using leave-one-out cross-validation and WAIC. Statistics and Computing, 27, 1413-1433.
Verrier, D., Sivapregassam, S., & Solente, A. C. (2014). Dose-finding studies, MCP-Mod, model selection, and model averaging: Two applications in the real world. Clinical Trials, 11, 476-484.
Wheeler, M. W., & Bailer, A. J. (2008). Model averaging software for dichotomous dose response risk estimation. Journal of Statistical Software, 26, 1-15.