Multifunctional nanocarriers for the treatment of periodontitis: Immunomodulatory, antimicrobial, and regenerative strategies.


Journal

Oral diseases
ISSN: 1601-0825
Titre abrégé: Oral Dis
Pays: Denmark
ID NLM: 9508565

Informations de publication

Date de publication:
Nov 2019
Historique:
received: 26 07 2018
revised: 31 10 2018
accepted: 11 12 2018
pubmed: 20 12 2018
medline: 1 1 2020
entrez: 20 12 2018
Statut: ppublish

Résumé

Periodontitis is an inflammatory disease, in which the host immuno-inflammatory response against the dysbiotic subgingival biofilm leads to the breakdown of periodontal tissues. Most of the available treatments seem to be effective in the short-term; nevertheless, permanent periodical controls and patient compliance compromise long-term success. Different strategies have been proposed for the modulation of the host immune response as potential therapeutic tools to take a better care of most susceptible periodontitis patients, such as drug local delivery approaches. Though, maintaining an effective drug concentration for a prolonged period of time has not been achieved yet. In this context, advanced drug delivery strategies using biodegradable nanocarriers have been proposed to avoid toxicity and frequency-related problems of treatment. The versatility of distinct nanocarriers allows the improvement of their loading and release capabilities and could be potentially used for microbiological control, periodontal regeneration, and/or immunomodulation. In the present review, we revise and discuss the most frequent biodegradable nanocarrier strategies proposed for the treatment of periodontitis, including polylactic-co-glycolic acid (PLGA), chitosan, and silica-derived nanoparticles, and further suggest novel therapeutic strategies.

Identifiants

pubmed: 30565778
doi: 10.1111/odi.13023
doi:

Substances chimiques

Anti-Bacterial Agents 0
Anti-Infective Agents 0
Polylactic Acid-Polyglycolic Acid Copolymer 1SIA8062RS
Chitosan 9012-76-4

Types de publication

Journal Article Review

Langues

eng

Pagination

1866-1878

Subventions

Organisme : CONICYT
Organisme : Comisión Nacional de Investigación Científica y Tecnológica (CONICYT)
ID : FONDECYT 1181780

Informations de copyright

© 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd. All rights reserved.

Références

Abbaraju, P. L., Jambhrunkar, M., Yang, Y., Liu, Y., Lu, Y., & Yu, C. (2018). Asymmetric mesoporous silica nanoparticles as potent and safe immunoadjuvants provoke high immune responses. Chemical Communications, 54, 2020-2023. https://doi.org/10.1039/C8CC00327K
Alarcón, M. A., Díaz, K. T., Aranda, L., Cafferata, E. A., Faggion, C. M. Jr., & Monje, A. (2017). Use of biologic agents to promote bone formation in implant dentistry: A critical assessment of systematic reviews. International Journal of Oral and Maxillofacial Implants, 32, 271-281. https://doi.org/10.11607/jomi.5101
Alvarez, C., Rojas, C., Rojas, L., Cafferata, E. A., Monasterio, G., & Vernal, R. (2018). Regulatory T lymphocytes in periodontitis: A translational view. Mediators of Inflammation, 2018, 7806912. https://doi.org/10.1155/2018/7806912
Arancibia, R., Maturana, C., Silva, D., Tobar, N., Tapia, C., Salazar, J. C., … Smith, P. C. (2013). Effects of chitosan particles in periodontal pathogens and gingival fibroblasts. Journal of Dental Research, 92, 740-745. https://doi.org/10.1177/0022034513494816
Büyüktimkin, B., Wang, Q., Kiptoo, P., Stewart, J. M., Berkland, C., & Siahaan, T. J. (2012). Vaccine-like controlled-release delivery of an immunomodulating peptide to treat experimental autoimmune encephalomyelitis. Molecular Pharmaceutics, 9, 979-985. https://doi.org/10.1021/mp200614q
Cappellano, G., Woldetsadik, A. D., Orilieri, E., Shivakumar, Y., Rizzi, M., Carniato, F., … Dianzani, U. (2014). Subcutaneous inverse vaccination with PLGA particles loaded with a MOG peptide and IL-10 decreases the severity of experimental autoimmune encephalomyelitis. Vaccine, 32, 5681-5689. https://doi.org/10.1016/j.vaccine.2014.08.016
Capurso, N. A., Look, M., Jeanbart, L., Nowyhed, H., Abraham, C., Craft, J., & Fahmy, T. M. (2010). Development of a nanoparticulate formulation of retinoic acid that suppresses Th17 cells and upregulates regulatory T cells. Self/Nonself, 1, 335-340. https://doi.org/10.4161/self.1.4.13946
Casella, G., Finardi, A., Descamps, H., Colombo, F., Maiorino, C., Ruffini, F., … Furlan, R. (2017). IL-27, but not IL-35, inhibits neuroinflammation through modulating GM-CSF expression. Scientific Reports, 7, 16547. https://doi.org/10.1038/s41598-017-16702-w
Cha, B. G., Jeong, J. H., & Kim, J. (2018). Extra-large pore mesoporous silica nanoparticles enabling co-delivery of high amounts of protein antigen and toll-like receptor 9 agonist for enhanced cancer vaccine efficacy. ACS Central Science, 4, 484-492. https://doi.org/10.1021/acscentsci.8b00035
Collison, L. W., Chaturvedi, V., Henderson, A. L., Giacomin, P. R., Guy, C., Bankoti, J., … Vignali, D. A. (2010). IL-35-mediated induction of a potent regulatory T cell population. Nature Immunology, 11, 1093-1101. https://doi.org/10.1038/ni.1952
Covarrubias, C., Cádiz, M., Maureira, M., Celhay, I., Cuadra, F., & von Marttens, A. (2018). Bionanocomposite scaffolds based on chitosan-gelatin and nanodimensional bioactive glass particles: In vitro properties and in vivo bone regeneration. Journal of Biomaterial Applications, 32, 1155-1163. https://doi.org/10.1177/0885328218759042
Covarrubias, C., Arroyo, F., Balanda, C., Neira, M., Von Marttens, A., Caviedes, P., … Urra, C. (2015). The effect of the nanoscale structure of nanobioceramics on their in vitro bioactivity and cell differentiation properties. Journal of Nanomaterials, 2015, 526230.
Dhakal, S., Renu, S., Ghimire, S., Shaan Lakshmanappa, Y., Hogshead, B. T., Feliciano-Ruiz, N., … Renukaradhya, G. J. (2018). Mucosal immunity and protective efficacy of intranasal inactivated influenza vaccine is improved by chitosan nanoparticle delivery in pigs. Frontiers in Immunology, 9, 934. https://doi.org/10.3389/fimmu.2018.00934
Díaz-Zúñiga, J., Melgar-Rodríguez, S., Rojas, L., Alvarez, C., Monasterio, G., Carvajal, P., & Vernal, R. (2017). Increased levels of the T-helper 22-associated cytokine (interleukin-22) and transcription factor (aryl hydrocarbon receptor) in patients with periodontitis are associated with osteoclast resorptive activity and severity of the disease. Journal of Periodontal Research, 52, 893-902. https://doi.org/10.1111/jre.12461
dos Santos, J. L., Haddad, R., Saldanha-Araujo, F., Baiochi, J., Goes, A., Santos, P., … Panepucci, R. A. (2017). TGF-beta/atRA-inducedTregs express a selected set of microRNAs involved in the repression of transcripts related to Th17 differentiation. Scientific Reports, 7, 3627.
Elamanchili, P., Diwan, M., Cao, M., & Samuel, J. (2004). Characterization of poly(D, L-lactic-co-glycolic acid) based nanoparticulate system for enhanced delivery of antigens to dendritic cells. Vaccine, 22, 2406-2412. https://doi.org/10.1016/j.vaccine.2003.12.032
Emami, J., Maghzi, P., Hasanzadeh, F., Sadeghi, H., Mirian, M., & Rostami, M. (2018). PLGA-PEG-RA-based polymeric micelles for tumor targeted delivery of irinotecan. Pharmaceutical Development and Technology, 23, 41-54. https://doi.org/10.1080/10837450.2017.1340950
Garlet, G. P. (2010). Destructive and protective roles of cytokines in periodontitis: A re-appraisal from host defense and tissue destruction viewpoints. Journal of Dental Research, 89, 1349-1363. https://doi.org/10.1177/0022034510376402
Garlet, G. P., Sfeir, C. S., & Little, S. R. (2014). Restoring host-microbe homeostasis via selective chemoattraction of Tregs. Journal of Dental Research, 93, 834-839. https://doi.org/10.1177/0022034514544300
Gentile, P., Chiono, V., Carmagnola, I., & Hatton, P. V. (2014). An overview of poly(lactic-co-glycolic) acid (PLGA)-based biomaterials for bone tissue engineering. International Journal of Molecular Sciences, 15, 3640-3659. https://doi.org/10.3390/ijms15033640
Getts, D. R., Shea, L. D., Miller, S. D., & King, N. J. (2015). Harnessing nanoparticles for immune modulation. Trends in Immunology, 36, 419-427. https://doi.org/10.1016/j.it.2015.05.007
Glowacki, A. J., Yoshizawa, S., Jhunjhunwala, S., Vieira, A. E., Garlet, G. P., Sfeir, C., & Little, S. R. (2013). Prevention of inflammation-mediated bone loss in murine and canine periodontal disease via recruitment of regulatory lymphocytes. Proceedings of the National Academy of Sciences of the United States of America, 110, 18525-18530. https://doi.org/10.1073/pnas.1302829110
Gong, W. Y., Dong, Y. M., Wang, S. N., Gao, X. J., & Chen, X. F. (2017). A novel nano-sized bioactive glass stimulates osteogenesis via the MAPK pathway. RSC Advances, 7, 13760-13767. https://doi.org/10.1039/C6RA26713K
Graves, D. T., Oates, T., & Garlet, G. P. (2011). Review of osteoimmunology and the host response in endodontic and periodontal lesions. Journal of Oral Microbiology, 3, 5304. https://doi.org/10.3402/jom.v3i0.5304
Haddadi, A., Elamanchili, P., Lavasanifar, A., Das, S., Shapiro, J., & Samuel, J. (2008). Delivery of rapamycin by PLGA nanoparticles enhances its suppressive activity on dendritic cells. Journal of Biomedical Materials Research Part A, 84, 885-898. https://doi.org/10.1002/jbm.a.31373
Hagiwara, M., Kurita-Ochiai, T., Kobayashi, R., Hashizume-Takizawa, T., Yamazaki, K., & Yamamoto, M. (2014). Sublingual vaccine with GroEL attenuates atherosclerosis. Journal of Dental Research, 93, 382-387. https://doi.org/10.1177/0022034514523784
Hajishengallis, G., & Lamont, R. J. (2016). Dancing with the stars: How choreographed bacterial interactions dictate nososymbiocity and give rise to keystone pathogens, accessory pathogens, and pathobionts. Trends in Microbiology, 24, 477-489. https://doi.org/10.1016/j.tim.2016.02.010
He, Q., Zhang, Z., Gao, F., Li, Y., & Shi, J. (2011). In vivo biodistribution and urinary excretion of mesoporous silica nanoparticles: Effects of particle size and PEGylation. Small (Weinheim an Der Bergstrasse, Germany), 7, 271-280. https://doi.org/10.1002/smll.201001459
Heidegger, S., Gößl, D., Schmidt, A., Niedermayer, S., Argyo, C., Endres, S., … Bourquin, C. (2016). Immune response to functionalized mesoporous silica nanoparticles for targeted drug delivery. Nanoscale, 8, 938-948. https://doi.org/10.1039/C5NR06122A
Jeong, E., Kim, K., Kim, J. H., Cha, G. S., Kim, S. J., Kang, H. S., & Choi, J. (2015). Porphyromonas gingivalis HSP60 peptides have distinct roles in the development of atherosclerosis. Molecular Immunology, 63, 489-496. https://doi.org/10.1016/j.molimm.2014.10.004
John, M. T., Michalowicz, B. S., Kotsakis, G. A., & Chu, H. (2017). Network meta-analysis of studies included in the Clinical Practice Guideline on the nonsurgical treatment of chronic periodontitis. Journal of Clinical Periodontology, 44, 603-611. https://doi.org/10.1111/jcpe.12726
Joshi, D., Garg, T., Goyal, A. K., & Rath, G. (2016). Advanced drug delivery approaches against periodontitis. Drug Delivery, 23, 363-377. https://doi.org/10.3109/10717544.2014.935531
Jung, T., Breitenbach, A., & Kissel, T. (2000). Sulfobutylated poly(vinyl alcohol)-graft-poly(lactide-co-glycolide)s facilitate the preparation of small negatively charged biodegradable nanospheres. Journal of Controlled Release, 67, 157-169. https://doi.org/10.1016/S0168-3659(00)00201-7
Kaneko, C., Kobayashi, T., Ito, S., Sugita, N., Murasawa, A., Nakazono, K., & Yoshie, H. (2018). Circulating levels of carbamylated protein and neutrophil extracellular traps are associated with periodontitis severity in patients with rheumatoid arthritis: A pilot case-control study. PLoS ONE, 13, e0192365. https://doi.org/10.1371/journal.pone.0192365
Keijzer, C., Spiering, R., Silva, A. L., van Eden, W., Jiskoot, W., Vervelde, L., & Broere, F. (2013). PLGA nanoparticles enhance the expression of retinaldehyde dehydrogenase enzymes in dendritic cells and induce FoxP3+ T-cells in vitro. Journal of Controlled Release, 168, 35-40. https://doi.org/10.1016/j.jconrel.2013.02.027
Kim, T. H., Singh, R. K., Kang, M. S., Kim, J. H., & Kim, H. W. (2016). Gene delivery nanocarriers of bioactive glass with unique potential to load BMP2 plasmid DNA and to internalize into mesenchymal stem cells for osteogenesis and bone regeneration. Nanoscale, 8, 8300-8311. https://doi.org/10.1039/C5NR07933K
Kinane, D. F., & Bartold, P. M. (2007). Clinical relevance of the host responses of periodontitis. Periodontology, 2000(43), 278-293. https://doi.org/10.1111/j.1600-0757.2006.00169.x
Kishimoto, T. K., & Maldonado, R. A. (2018). Nanoparticles for the induction of antigen-specific immunological tolerance. Frontiers in Immunology, 9, 230. https://doi.org/10.3389/fimmu.2018.00230
Kong, M., Tang, J., Qiao, Q., Wu, T., Qi, Y., Tan, S., … Zhang, Z. (2017). Biodegradable hollow mesoporous silica nanoparticles for regulating tumor microenvironment and enhancing antitumor efficiency. Theranostics, 7, 3276-3292. https://doi.org/10.7150/thno.19987
Kwon, D., Cha, B. G., Cho, Y., Min, J., Park, E. B., Kang, S. J., & Kim, J. (2017). Extra-large pore mesoporous silica nanoparticles for directing in vivo M2 macrophage polarization by delivering IL-4. Nano Letters, 17, 2747-2756. https://doi.org/10.1021/acs.nanolett.6b04130
Lee, B. S., Lee, C. C., Wang, Y. P., Chen, H. J., Lai, C. H., Hsieh, W. L., & Chen, Y. W. (2016). Controlled-release of tetracycline and lovastatin by poly(D, L-lactide-co-glycolide acid)-chitosan nanoparticles enhances periodontal regeneration in dogs. International Journal of Nanomedicine, 11, 285-297.
Lee, S., Yun, H. S., & Kim, S. H. (2011). The comparative effects of mesoporous silica nanoparticles and colloidal silica on inflammation and apoptosis. Biomaterials, 32, 9434-9443. https://doi.org/10.1016/j.biomaterials.2011.08.042
Li, X., Dong, W., Nalin, A. P., Wang, Y., Pan, P., Xu, B., … Yu, J. (2018). The natural product chitosan enhances the anti-tumor activity of natural killer cells by activating dendritic cells. OncoImmunology, 7, e1431085. https://doi.org/10.1080/2162402X.2018.1431085
Lim, H. H., Yi, H., Kishimoto, T. K., Gao, F., Sun, B., & Kishnani, P. S. (2017). A pilot study on using rapamycin-carrying synthetic vaccine particles (SVP) in conjunction with enzyme replacement therapy to induce immune tolerance in Pompe disease. Molecular Genetics and Metabolism Reports, 13, 18-22. https://doi.org/10.1016/j.ymgmr.2017.03.005
Lima, A. C., Cunha, C., Carvalho, A., Ferreira, H., & Neves, N. M. (2018). Interleukin-6 neutralization by antibodies immobilized at the surface of polymeric nanoparticles as a therapeutic strategy for arthritic diseases. ACS Applied Materials & Interfaces, 10, 13839-13850. https://doi.org/10.1021/acsami.8b01432
Lin, J. H., Feng, F., Yu, M. C., Wang, C. H., & Chang, P. C. (2018). Modulation of periodontitis progression using pH-responsive nanosphere encapsulating metronidazole or N-phenacylthialzolium bromide. Journal of Periodontal Research, 53, 22-28.
Liu, J., Chen, Y., Liu, D., Liu, W., Hu, S., Zhou, N., & Xie, Y. (2017). Ectopic expression of SIGIRR in the colon ameliorates colitis in mice by downregulating TLR4/NF-κB overactivation. Immunology Letters, 183, 52-61. https://doi.org/10.1016/j.imlet.2017.01.015
Ma, Z., Dagnaes-Hansen, F., Løvschall, H., Song, W., Nielsen, G. K., Yang, C., … Gao, S. (2015). Macrophage-mediated nanoparticle delivery to the periodontal lesions in established murine model via Pg-LPS induction. Journal of Oral Pathology & Medicine, 44, 538-542.
Madhumathi, K., & Sampath Kumar, T. S. (2014). Regenerative potential and anti-bacterial activity of tetracycline loaded apatitic nanocarriers for the treatment of periodontitis. Biomedical Materials, 9, 035002. https://doi.org/10.1088/1748-6041/9/3/035002
Maldonado, R. A., LaMothe, R. A., Ferrari, J. D., Zhang, A. H., Rossi, R. J., Kolte, P. N., … Kishimoto, T. K. (2015). Polymeric synthetic nanoparticles for the induction of antigen-specific immunological tolerance. Proceedings of the National Academy of Sciences of the United States of America, 112, E156-E165. https://doi.org/10.1073/pnas.1408686111
Marchesan, J. T., Morelli, T., Lundy, S. K., Jiao, Y., Lim, S., Inohara, N., … Giannobile, W. V. (2012). Divergence of the systemic immune response following oral infection with distinct strains of Porphyromonas gingivalis. Molecular Oral Microbiology, 27, 483-495. https://doi.org/10.1111/omi.12001
McGowan, K., McGowan, T., & Ivanovski, S. (2018). Optimal dose and duration of amoxicillin-plus-metronidazole as an adjunct to non-surgical periodontal therapy: A systematic review and meta-analysis of randomized, placebo-controlled trials. Journal of Clinical Periodontology, 45, 56-67. https://doi.org/10.1111/jcpe.12830
Mundargi, R. C., Babu, V. R., Rangaswamy, V., Patel, P., & Aminabhavi, T. M. (2008). Nano/micro technologies for delivering macromolecular therapeutics using poly(D, L-lactide-co-glycolide) and its derivatives. Journal of Controlled Release, 125, 193-209. https://doi.org/10.1016/j.jconrel.2007.09.013
Napimoga, M. H., da Silva, C. A., Carregaro, V., Farnesi-de-Assuncao, T. S., Duarte, P. M., de Melo, N. F., & Fraceto, L. F. (2012). Exogenous administration of 15d-PGJ2-loaded nanocapsules inhibits bone resorption in a mouse periodontitis model. Journal of Immunology, 189, 1043-1052. https://doi.org/10.4049/jimmunol.1200730
Narvekar, M., Xue, H. Y., Tran, N. T., Mikhael, M., & Wong, H. L. (2014). A new nanostructured carrier design including oil to enhance the pharmaceutical properties of retinoid therapy and its therapeutic effects on chemo-resistant ovarian cancer. European Journal of Pharmaceutics and Biopharmaceutics, 88, 226-237. https://doi.org/10.1016/j.ejpb.2014.04.014
Navarro-Barriuso, J., Mansilla, M. J., Naranjo-Gómez, M., Sánchez-Pla, A., Quirant-Sánchez, B., Teniente-Serra, A., … Martínez-Cáceres, E. M. (2018). Comparative transcriptomic profile of tolerogenic dendritic cells differentiated with vitamin D3, dexamethasone and rapamycin. Scientific Reports, 8, 14985. https://doi.org/10.1038/s41598-018-33248-7
Nguyen, S., & Hiorth, M. (2015). Advanced drug delivery systems for local treatment of the oral cavity. Therapeutic Delivery, 6, 595-608. https://doi.org/10.4155/tde.15.5
Pichayakorn, W., & Boonme, P. (2013). Evaluation of cross-linked chitosan microparticles containing metronidazole for periodontitis treatment. Materials Science and Engineering C: Materials for Biological Applications, 33, 1197-1202. https://doi.org/10.1016/j.msec.2012.12.010
Prasad, S., Xu, D., & Miller, S. D. (2012). Tolerance strategies employing antigen-coupled apoptotic cells and carboxylated PLG nanoparticles for the treatment of type 1 diabetes. Review of Diabetic Studies, 9, 319-327. https://doi.org/10.1900/RDS.2012.9.319
Ranjbar-Mohammadi, M., Zamani, M., Prabhakaran, M. P., Bahrami, S. H., & Ramakrishna, S. (2016). Electrospinning of PLGA/gum tragacanth nanofibers containing tetracycline hydrochloride for periodontal regeneration. Materials Science and Engineering C: Materials for Biological Applications, 58, 521-531. https://doi.org/10.1016/j.msec.2015.08.066
Rothstein, S. N., & Little, S. R. (2011). A "tool box" for rational design of degradable controlled release formulations. Journal of Materials Chemistry, 21, 29-39. https://doi.org/10.1039/C0JM01668C
Scannapieco, F. A., & Cantos, A. (2016). Oral inflammation and infection, and chronic medical diseases: Implications for the elderly. Periodontology, 2000(72), 153-175. https://doi.org/10.1111/prd.12129
Song, L., Dong, G., Guo, L., & Graves, D. T. (2018). The function of dendritic cells in modulating the host response. Molecular Oral Microbiology, 33, 13-21. https://doi.org/10.1111/omi.12195
Szymańska, E., & Winnicka, K. (2015). Stability of chitosan-a challenge for pharmaceutical and biomedical applications. Marine Drugs, 13, 1819-1846. https://doi.org/10.3390/md13041819
Van Dyke, T. E. (2007). Cellular and molecular susceptibility determinants for periodontitis. Periodontology, 2000(45), 10-13. https://doi.org/10.1111/j.1600-0757.2007.00228.x
Vernal, R., & Garcia-Sanz, J. A. (2008). Th17 and Treg cells, two new lymphocyte subpopulations with a key role in the immune response against infection. Infectious Disorders - Drug Targets, 8, 207-220. https://doi.org/10.2174/187152608786734197
Wang, L., Guan, N., Jin, Y., Lin, X., & Gao, H. (2015). Subcutaneous vaccination with Porphyromonas gingivalis ameliorates periodontitis by modulating Th17/Treg imbalance in a murine model. International Immunopharmacology, 25, 65-73. https://doi.org/10.1016/j.intimp.2015.01.007
Wayakanon, K., Thornhill, M. H., Douglas, C. W., Lewis, A. L., Warren, N. J., Pinnock, A., … Murdoch, C. (2013). Polymersome-mediated intracellular delivery of antibiotics to treat Porphyromonas gingivalis-infected oral epithelial cells. FASEB Journal, 27, 4455-4465. https://doi.org/10.1096/fj.12-225219
Whitehouse, G., Gray, E., Mastoridis, S., Merritt, E., Kodela, E., Yang, J. H. M., … Martinez-Llordella, M. (2017). IL-2 therapy restores regulatory T-cell dysfunction induced by calcineurin inhibitors. Proceedings of the National Academy of Sciences of the United States of America, 114, 7083-7088. https://doi.org/10.1073/pnas.1620835114
Wojas-Krawczyk, K., Homa-Mlak, I., Krawczyk, P., Kucharczyk, T., & Milanowski, J. (2016). Dendritic cells stimulated by MUC1 antigen could induce lymphocytes' anergy through PD-L2 but not through PD-L1 patway. Annals of Oncology, 27, 958-960. https://doi.org/10.1093/annonc/mdw057
Yu, T., Malugin, A., & Ghandehari, H. (2011). Impact of silica nanoparticle design on cellular toxicity and hemolytic activity. ACS Nano, 5, 5717-5728. https://doi.org/10.1021/nn2013904
Zhang, K., Tang, X., Zhang, J., Lu, W., Lin, X., Zhang, Y., … He, H. (2014). PEG-PLGA copolymers: Their structure and structure-influenced drug delivery applications. Journal of Control Release, 183, 77-86. https://doi.org/10.1016/j.jconrel.2014.03.026

Auteurs

Emilio A Cafferata (EA)

Periodontal Biology Laboratory, Department of Conservative Dentistry, Faculty of Dentistry, Universidad de Chile, Santiago, Chile.
Faculty of Dentistry, Universidad Peruana Cayetano Heredia, Lima, Perú.

Carla Alvarez (C)

Periodontal Biology Laboratory, Department of Conservative Dentistry, Faculty of Dentistry, Universidad de Chile, Santiago, Chile.

Karla T Diaz (KT)

School of Public Health, Faculty of Medicine, Universidad de Chile, Santiago, Chile.

Miguel Maureira (M)

Laboratory of Nanobiomaterials, ICOD, Faculty of Dentistry, Universidad de Chile, Santiago, Chile.

Gustavo Monasterio (G)

Periodontal Biology Laboratory, Department of Conservative Dentistry, Faculty of Dentistry, Universidad de Chile, Santiago, Chile.

Fermín E González (FE)

Laboratory of Experimental Immunology and Cancer, Department of Conservative Dentistry, Faculty of Dentistry, Universidad de Chile, Santiago, Chile.

Cristian Covarrubias (C)

Laboratory of Nanobiomaterials, ICOD, Faculty of Dentistry, Universidad de Chile, Santiago, Chile.

Rolando Vernal (R)

Periodontal Biology Laboratory, Department of Conservative Dentistry, Faculty of Dentistry, Universidad de Chile, Santiago, Chile.
Dentistry Unit, Faculty of Health Sciences, Universidad Autónoma de Chile, Santiago, Chile.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH