Photophysics of perylene monoimide-labelled organocatalysts.
Journal
Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology
ISSN: 1474-9092
Titre abrégé: Photochem Photobiol Sci
Pays: England
ID NLM: 101124451
Informations de publication
Date de publication:
13 Feb 2019
13 Feb 2019
Historique:
pubmed:
20
12
2018
medline:
20
12
2018
entrez:
20
12
2018
Statut:
ppublish
Résumé
We designed and synthesized cinchona alkaloid derivates PMI-BnCPD, 1 and PMI-dHQD, 2, in which a fluorescent perylene monoimide unit is linked to the quinuclidine fragment. The latter acts as an electron donor, quenching the perylene imide fluorescence in polar solvents. In the organocatalytic application of these compounds, the electron donor is deactivated by binding to an electrophile, e.g. H+. We show that this restores the fluorescence, allowing the compounds to signal the electrophile binding step that occurs in many catalytic reactions. In order to demonstrate that charge transfer is indeed the fluorescence quenching mechanism, we detected the charge separated state by means of transient absorption spectroscopy. Incidentally, the excited state absorption bands of the locally excited and charge transfer states are very similar. The activity of the fluorophore labeled organocatalyst 1 in a fluorogenic Michael addition reaction is demonstrated.
Identifiants
pubmed: 30566162
doi: 10.1039/c8pp00462e
pii: 10.1039/c8pp00462e
doi:
Types de publication
Journal Article
Langues
eng
Pagination
524-533Références
T. S. Kaufman and E. A. Rúveda, The quest for quinine: those who won the battles and those who won the war, Angew. Chem., Int. Ed., 2005, 44, 854–885.
doi: 10.1002/anie.200400663
M. Li, X.-S. Xue and J.-P. Cheng, Mechanism and Origins of Stereoinduction in Natural Cinchona Alkaloid Catalyzed Asymmetric Electrophilic Trifluoromethylthiolation of ß-Keto Esters with N-Trifluoromethylthiophthalimide as Electrophilic SCF
doi: 10.1021/acscatal.7b03007
S.-X. Cao, J.-X. Wang and Z.-J. He, Magnetic nanoparticles supported cinchona alkaloids for asymmetric Michael addition reaction of 1, 3-dicarbonyls and maleimides, Chin. Chem. Lett., 2018, 29, 201–204.
doi: 10.1016/j.cclet.2017.06.022
M. Rueping, X. Liu, T. Bootwicha, R. Pluta and C. Merkens, Catalytic enantioselective trifluoromethylthiolation of oxindoles using shelf-stable N-(trifluoromethylthio) phthalimide and a cinchona alkaloid catalyst, Chem. Commun., 2014, 50, 2508–2511.
doi: 10.1039/c3cc49877h
J. D. Duan and P. F. Li, Asymmetric organocatalysis mediated by primary amines derived from cinchona alkaloids: recent advances, Catal. Sci. Technol., 2014, 4, 311–320.
doi: 10.1039/C3CY00739A
M. N. Grayson and K. Houk, Cinchona Alkaloid-Catalyzed Asymmetric Conjugate Additions: The Bifunctional Brønsted Acid–Hydrogen Bonding Model, J. Am. Chem. Soc., 2016, 138, 1170–1173.
pubmed: 26785222
doi: 10.1021/jacs.5b13275
J.-L. Zhu, Y. Zhang, C. Liu, A.-M. Zheng and W. Wang, Insights into the dual activation mechanism involving bifunctional cinchona alkaloid thiourea organocatalysts: An NMR and DFT study, J. Org. Chem., 2012, 77, 9813–9825.
pubmed: 23043446
doi: 10.1021/jo302133n
T. Marcelli and H. Hiemstra, Cinchona alkaloids in asymmetric organocatalysis, Synthesis, 2010, 1229–1279.
J. Guo, Z.-H. Lin, K.-B. Chen, Y. Xie, A. S. Chan, J. Weng and G. Lu, Asymmetric amination of 2-substituted indolin-3-ones catalyzed by natural cinchona alkaloids, Org. Chem. Front., 2017, 4, 1400–1406.
doi: 10.1039/C7QO00129K
S. I. Yang, R. K. Lammi, S. Prathapan, M. A. Miller, J. Seth, J. R. Diers, D. F. Bocian, J. S. Lindsey and D. Holten, Synthesis and excited-state photodynamics of perylene-por-phyrin dyads. Part 3. Effects of perylene, linker, and connectivity on ultrafast energy transfer, J. Mater. Chem., 2001, 11, 2420–2430.
doi: 10.1039/b102741g
C. Kirmaier, S. I. Yang, S. Prathapan, M. A. Miller, J. R. Diers, D. F. Bocian, J. S. Lindsey and D. Holten, Synthesis and excited-state photodynamics of perylene-por-phyrin dyads. 4. Ultrafast charge separation and charge recombination between tightly coupled units in polar media, Res. Chem. Intermed., 2002, 28, 719–740.
doi: 10.1163/15685670260469384
L. Huang and S.-W. Tam-Chang, N-(2-(N′, N′-Diethylamino) ethyl) perylene-3, 4-dicarboximide and its Quaternized Derivatives as Fluorescence Probes of Acid, Temperature, and Solvent Polarity, J. Fluoresc., 2011, 21, 213–222.
pubmed: 20737285
doi: 10.1007/s10895-010-0708-z
J. S. High, K. A. Virgil and E. Jakubikova, Electronic Structure and Absorption Properties of Strongly Coupled Porphyrin–Perylene Arrays, J. Phys. Chem. A, 2015, 119, 9879–9888.
pubmed: 26322743
doi: 10.1021/acs.jpca.5b05600
J. Cremer, E. Mena-Osteritz, N. G. Pschierer, K. Müllen and P. Bäuerle, Dye-functionalized head-to-tail coupled oligo (3-hexylthiophenes)—perylene–oligothiophene dyads for photovoltaic applications, Org. Biomol. Chem., 2005, 3, 985–995.
pubmed: 15750640
doi: 10.1039/B414817G
J. Cremer and P. Bäuerle, Perylene–oligothiophene–perylene triads for photovoltaic applications, Eur. J. Org. Chem., 2005, 3715–3723.
J. Jacob, S. Sax, T. Piok, E. J. List, A. C. Grimsdale and K. Müllen, Ladder-type pentaphenylenes and their polymers: efficient blue-light emitters and electron-accepting materials via a common intermediate, J. Am. Chem. Soc., 2004, 126, 6987–6995.
pubmed: 15174868
doi: 10.1021/ja0398823
T. D. Bell, J. Jacob, M. Angeles-Izquierdo, E. Fron, F. Nolde, J. Hofkens, K. Müllen and F. C. De Schryver, Charge transfer enhanced annihilation leading to deterministic single photon emission in rigid perylene end-capped polyphenylenes, Chem. Commun., 2005, 4973–4975.
T. Weil, U. M. Wiesler, A. Herrmann, R. Bauer, J. Hofkens, F. C. De Schryver and K. Müllen, Polyphenylene dendrimers with different fluorescent chromophores asymmetrically distributed at the periphery, J. Am. Chem. Soc., 2001, 123, 8101–8108.
pubmed: 11506567
doi: 10.1021/ja010579g
T. Weil, E. Reuther, C. Beer and K. Müllen, Synthesis and characterization of dendritic multichromophores based on rylene dyes for vectorial transduction of excitation energy, Chem. – Eur. J., 2004, 10, 1398–1414.
pubmed: 15034884
doi: 10.1002/chem.200305359
A. Petrella, J. Cremer, L. De Cola, P. Bäuerle and R. M. Williams, Charge Transfer Processes in Conjugated Triarylamine– Oligothiophene– Perylenemonoimide Dendrimers, J. Phys. Chem. A, 2005, 109, 11687–11695.
pubmed: 16366618
doi: 10.1021/jp0510995
Q. Wang, S. M. Zakeeruddin, J. Cremer, P. Bäuerle, R. Humphry-Baker and M. Grätzel, Cross surface ambipolar charge percolation in molecular triads on mesoscopic oxide films, J. Am. Chem. Soc., 2005, 127, 5706–5713.
pubmed: 15826212
doi: 10.1021/ja0426701
J. Cremer and P. Bäuerle, Star-shaped perylene–oligothiophene–triphenylamine hybrid systems for photovoltaic applications, J. Mater. Chem., 2006, 16, 874–884.
doi: 10.1039/B515657B
T. D. Bell, A. Stefan, V. Lemaur, S. Bernhardt, K. Müllen, J. Cornil, D. Beljonne, J. Hofkens, M. Van der Auweraer and F. C. De Schryver, Non-conjugated, phenyl assisted coupling in through bond electron transfer in a perylenemonoimide–triphenylamine system, Photochem. Photobiol. Sci., 2007, 6, 406–415.
pubmed: 17404635
doi: 10.1039/B617913D
R. T. Hayes, M. R. Wasielewski and D. Gosztola, Ultrafast photoswitched charge transmission through the bridge molecule in a donor− bridge− acceptor system, J. Am. Chem. Soc., 2000, 122, 5563–5567.
doi: 10.1021/ja000219d
K.-Y. Tomizaki, P. Thamyongkit, R. S. Loewe and J. S. Lindsey, Practical synthesis of perylene-monoimide building blocks that possess features appropriate for use in porphyrin-based light-harvesting arrays, Tetrahedron, 2003, 59, 1191–1207.
doi: 10.1016/S0040-4020(03)00020-6
K.-Y. Tomizaki, R. S. Loewe, C. Kirmaier, J. K. Schwartz, J. L. Retsek, D. F. Bocian, D. Holten and J. S. Lindsey, Synthesis and photophysical properties of light-harvesting arrays comprised of a porphyrin bearing multiple perylenemonoimide accessory pigments, J. Org. Chem., 2002, 67, 6519–6534.
pubmed: 12201776
doi: 10.1021/jo0258002
J. Baffreau, L. Ordronneau, S. Leroy-Lhez and P. Hudhomme, Synthesis of perylene-3, 4-mono (dicarboximide)− fullerene C
pubmed: 18642952
doi: 10.1021/jo800804z
J. A. Elemans, R. van Hameren, R. J. Nolte and A. E. Rowan, Molecular Materials by Self-Assembly of Porphyrins, Phthalocyanines, and Perylenes, Adv. Mater., 2006, 18, 1251–1266.
doi: 10.1002/adma.200502498
Q. Al-Galiby, I. Grace, H. Sadeghi and C. J. Lambert, Exploiting the extended π-system of perylene bisimide for label-free single-molecule sensing, J. Mater. Chem. C, 2015, 3, 2101–2106.
doi: 10.1039/C4TC02897J
M. Mitsui, H. Fukui, R. Takahashi, Y. Takakura and T. Mizukami, Single-Molecule Fluorescence Spectroscopy of Perylene Diimide Dyes in a γ-Cyclodextrin Film: Manifestation of Photoinduced H-Atom Transfer via Higher Triplet (n, π*) Excited States, J. Phys. Chem. A, 2017, 121, 1577–1586.
pubmed: 28191974
doi: 10.1021/acs.jpca.6b11353
H. Hiemstra and H. Wynberg, Addition of aromatic thiols to conjugated cycloalkenones, catalyzed by chiral ß-hydroxy amines. A mechanistic study of homogeneous catalytic asymmetric synthesis, J. Am. Chem. Soc., 1981, 103, 417–430.
doi: 10.1021/ja00392a029
R. Helder, R. Arends, W. Bolt, H. Hiemstra and H. Wynberg, Alkaloid catalyzed asymmetric synthesis III the addition of mercaptans to 2-cyclohexene-1-one; determination of enantiomeric excess using
doi: 10.1016/S0040-4039(01)83713-8
G. Tanriver, B. Dedeoglu, S. Catak and V. Aviyente, Computational Studies on Cinchona Alkaloid-Catalyzed Asymmetric Organic Reactions, Acc. Chem. Res., 2016, 49, 1250–1262.
pubmed: 27254097
doi: 10.1021/acs.accounts.6b00078
T. Marcelli, Organocatalysis: cinchona catalysts, Wiley Interdiscip. Rev.: Comput. Mol. Sci., 2011, 1, 142–152.
T. Kumpulainen, J. Qian and A. M. Brouwer, Spectroscopic Study of a Cinchona Alkaloid-Catalyzed Henry Reaction, ACS Omega, 2018, 3, 1871–1880.
pubmed: 29503974
pmcid: 5830691
doi: 10.1021/acsomega.7b01713
W. Qin, A. Vozza and A. M. Brouwer, Photophysical properties of cinchona organocatalysts in organic solvents, J. Phys. Chem. C, 2009, 113, 11790–11795.
doi: 10.1021/jp901867h
T. Kumpulainen and A. M. Brouwer, Excited-state proton transfer and ion pair formation in a Cinchona organo–catalyst, Phys. Chem. Chem. Phys., 2012, 14, 13019–13026.
pubmed: 22907041
doi: 10.1039/c2cp41483j
J. Qian and A. M. Brouwer, Excited state proton transfer in the Cinchona alkaloid cupreidine, Phys. Chem. Chem. Phys., 2010, 12, 12562–12569.
pubmed: 20725679
doi: 10.1039/c003419c
W. Zhang, M. Caldarola, X. Lu, B. Pradhan and M. Orrit, Single-molecule fluorescence enhancement of a near-infrared dye by gold nanorods using DNA transient binding, Phys. Chem. Chem. Phys., 2018, 20, 20468–20475.
pubmed: 30043814
doi: 10.1039/C8CP03114B
N. I. Georgiev, A. R. Sakr and V. B. Bojinov, Design and synthesis of novel fluorescence sensing perylene diimides based on photoinduced electron transfer, Dyes Pigm., 2011, 91, 332–339.
doi: 10.1016/j.dyepig.2011.04.015
J. Xie, Y. Chen, W. Yang, D. Xu and K. Zhang, Water soluble 1, 8-naphthalimide fluorescent pH probes and their application to bioimagings, J. Photochem. Photobiol., A, 2011, 223, 111–118.
doi: 10.1016/j.jphotochem.2011.08.006
N. I. Georgiev, M. D. Dimitrova, A. M. Asiri, K. A. Alamry and V. B. Bojinov, Synthesis, sensor activity and logic behaviour of a novel bichromophoric system based on rho-damine 6G and 1, 8-naphthalimide, Dyes Pigm., 2015, 115, 172–180.
doi: 10.1016/j.dyepig.2015.01.001
S. Malkondu, A highly selective and sensitive perylenebisimide-based fluorescent PET sensor for Al
P. J. Pacheco-Liñán, M. Moral, M. L. Nueda, R. Cruz-Sánchez, J. Fernández-Sainz, A. Garzón-Ruiz, I. Bravo, M. Melguizo, J. Laborda and J. Albaladejo, Study on the pH Dependence of the Photophysical Properties of a Functionalized Perylene Bisimide and Its Potential Applications as a Fluorescence Lifetime Based pH Probe, J. Phys. Chem. C, 2017, 121, 24786–24797.
doi: 10.1021/acs.jpcc.7b07839
D. Wu, A. C. Sedgwick, T. Gunnlaugsson, E. U. Akkaya, J. Yoon and T. D. James, Fluorescent chemosensors: the past, present and future, Chem. Soc. Rev., 2017, 46, 7105–7123.
doi: 10.1039/C7CS00240H
B. Daly, J. Ling and A. P. De Silva, Current developments in fluorescent PET (photoinduced electron transfer) sensors and switches, Chem. Soc. Rev., 2015, 44, 4203–4211.
pubmed: 25695939
pmcid: 25695939
doi: 10.1039/C4CS00334A
A. Weller, Photoinduced electron transfer in solution: exciplex and radical ion pair formation free enthalpies and their solvent dependence, Z. Phys. Chem., 1982, 133, 93–98.
H. Oevering, M. N. Paddon-Row, M. Heppener, A. M. Oliver, E. Cotsaris, J. W. Verhoeven and N. S. Hush, Long-range photoinduced through-bond electron transfer and radiative recombination via rigid nonconjugated bridges: distance and solvent dependence, J. Am. Chem. Soc., 1987, 109, 3258–3269.
P. Atkins, J. De Paula and J. Keeler, Atkins’ physical chemistry, Oxford University Press, 2018.
C. Reichardt and T. Welton, Solvents and Solvent Effects in Organic Chemistry, Wiley-VCH, Weinheim, 2013.
Š. Vajda, R. Jimenez, S. J. Rosenthal, V. Fidler, G. R. Fleming and E. W. Castner, Femtosecond to nanosecond solvation dynamics in pure water and inside the γ-cyclodextrin cavity, J. Chem. Soc., Faraday Trans., 1995, 91, 867–873.
doi: 10.1039/FT9959100867
R. Jimenez, G. R. Fleming, P. Kumar and M. Maroncelli, dynamics of water, Nature, 1994, 369, 471–473.
doi: 10.1038/369471a0
S. J. Rosenthal, X. Xie, M. Du and G. R. Fleming, Femtosecond solvation dynamics in acetonitrile: Observation of the inertial contribution to the solvent response, J. Chem. Phys., 1991, 95, 4715–4718.
doi: 10.1063/1.461742
B. Bagchi and B. Jana, Solvation dynamics in dipolar liquids, Chem. Soc. Rev., 2010, 39, 1936–1954.
pubmed: 20502796
doi: 10.1039/b902048a
T. Kumpulainen, B. Lang, A. Rosspeintner and E. Vauthey, Ultrafast Elementary Photochemical Processes of Organic Molecules in Liquid Solution, Chem. Rev., 2016, 117, 10826–10939.
pubmed: 27957848
doi: 10.1021/acs.chemrev.6b00491
E. W. Castner Jr., M. Maroncelli and G. R. Fleming, Subpicosecond resolution studies of solvation dynamics in polar aprotic and alcohol solvents, J. Chem. Phys., 1987, 86, 1090–1097.
doi: 10.1063/1.452249
S. J. Rosenthal, R. Jimenez, G. R. Fleming, P. Kumar and M. Maroncelli, Solvation dynamics in methanol: Experimental and molecular dynamics simulation studies, J. Mol. Liq., 1994, 60, 25–56.
doi: 10.1016/0167-7322(94)00738-1
T. Fonseca and B. M. Ladanyi, Solvation dynamics in methanol: solute and perturbation dependence, J. Mol. Liq., 1994, 60, 1–24.
doi: 10.1016/0167-7322(94)00737-3
D. Bingemann and N. P. Ernsting, Femtosecond solvation dynamics determining the band shape of stimulated emission from a polar styryl dye, J. Chem. Phys., 1995, 102, 2691–2700.
doi: 10.1063/1.468645
J. J. Snellenburg, S. P. Laptenok, R. Seger, K. M. Mullen and I. H. M. van Stokkum, Glotaran: a Java-based graphical user interface for the R package TIMP, J. Stat. Softw., 2012, 49, 1–22.
doi: 10.18637/jss.v049.i03
C. Hippius, I. H. M. van Stokkum, E. Zangrando, R. M. Williams and F. Würthner, Excited state interactions in calix [4] arene-perylene bisimide dye conjugates: Global and target analysis of supramolecular building blocks, J. Phys. Chem. C, 2007, 111, 13988–13996.
doi: 10.1021/jp0733825
R. Berera, R. van Grondelle and J. T. Kennis, Ultrafast transient absorption spectroscopy: principles and application to photosynthetic systems, Photosynth. Res., 2009, 101, 105–118.
J. Ravensbergen, F. F. Abdi, J. H. van Santen, R. N. Frese, B. Dam, R. van de Krol and J. T. Kennis, Unraveling the carrier dynamics of BiVO
doi: 10.1021/jp509930s
G. Schweitzer, R. Gronheid, S. Jordens, M. Lor, G. De Belder, T. Weil, E. Reuther, K. Müllen and F. C. De Schryver, Intramolecular directional energy transfer processes in dendrimers containing perylene and terrylene chromophores, J. Phys. Chem. A, 2003, 107, 3199–3207.
doi: 10.1021/jp026459s
G. De Belder, S. Jordens, M. Lor, G. Schweitzer, R. De, T. Weil, A. Herrmann, U. K. Wiesler, K. Müllen and F. C. De Schryver, Femtosecond fluorescence upconversion study of rigid dendrimers containing peryleneimide chromophores at the rim, J. Photochem. Photobiol., A, 2001, 145, 61–70.
doi: 10.1016/S1010-6030(01)00569-X
N. Mataga, H. Chosrowjan, S. Taniguchi, Y. Shibata, N. Yoshida, A. Osuka, T. Kikuzawa and T. Okada, Ultrafast Charge Separation from the S
doi: 10.1021/jp021522z
E. H. A. Beckers, S. C. J. Meskers, A. P. H. J. Schenning, Z. Chen, F. Würthner and R. A. J. Janssen, Charge separation and recombination in photoexcited oligo (p-phenylene vinylene): Perylene bisimide arrays close to the marcus inverted region, J. Phys. Chem. A, 2004, 108, 6933–6937.
doi: 10.1021/jp048980n
J. Kaur, N. Islam, A. Kumar, V. K. Bhardwaj and S. S. Chimni, Organocatalytic enantioselective synthesis of C
doi: 10.1016/j.tet.2016.10.037
T. Matsumoto, Y. Urano, T. Shoda, H. Kojima and T. Nagano, A thiol-reactive fluorescence probe based on donor-excited photoinduced electron transfer: key role of ortho substitution, Org. Lett., 2007, 9, 3375–3377.
pubmed: 17645349
doi: 10.1021/ol071352e