Validity of multi-frequency bioelectric impedance methods to measure body composition in obese patients: a systematic review.
Absorptiometry, Photon
/ methods
Adiposity
/ physiology
Adolescent
Adult
Aged
Bariatric Surgery
Body Composition
/ physiology
Body Mass Index
Body Weights and Measures
/ methods
Electric Impedance
Female
Health Personnel
Humans
Male
Middle Aged
Obesity
/ physiopathology
Validation Studies as Topic
Young Adult
Journal
International journal of obesity (2005)
ISSN: 1476-5497
Titre abrégé: Int J Obes (Lond)
Pays: England
ID NLM: 101256108
Informations de publication
Date de publication:
08 2019
08 2019
Historique:
received:
16
05
2018
accepted:
28
11
2018
revised:
15
08
2018
pubmed:
21
12
2018
medline:
29
4
2020
entrez:
21
12
2018
Statut:
ppublish
Résumé
Excessive lean tissue loss following bariatric surgery may pose serious metabolic consequences. Accurate methods to assess body composition following bariatric surgery are required. This review aimed to investigate if multi-frequency bioelectric impedance (MF-BI) is a valid tool to determine body composition in obese patients. MEDLINE, EMBASE, CINAHL and CENTRAL databases were searched until March 2017. Included studies were published in English with obese (body mass index (BMI) ≥ 30 kg/m Sixteen studies were eligible for inclusion. Sample sizes ranged from 15 to 157, with BMI 26-48 kg/m This review found that MF-BI is reliable for use at a group level. Obese-specific adjustment of algorithms for MF-BI machines increases the accuracy of absolute measures of body composition in obese individuals, improving their utility in the clinical setting. Multiple variables contributed a lack of consistency among studies included, highlighting the need for more robust studies that control confounding variables to establish clear validity assessment.
Identifiants
pubmed: 30568268
doi: 10.1038/s41366-018-0285-9
pii: 10.1038/s41366-018-0285-9
doi:
Types de publication
Journal Article
Systematic Review
Langues
eng
Sous-ensembles de citation
IM
Pagination
1497-1507Références
Colquitt J, Picot J, Loveman E, Clegg A, Kruseman M, Leimgruber A, et al. Surgery for obesity (Review). Cochrane Database Syst Rev. CD003641; 2009.
Vos T, Carter R, Barendregt J, Mehalopoulos C, Veerman L, Magnus A, et al. Assessing cost-effectiveness in prevention: ACE-prevention September 2010 final report. Brisbane, Qld: University of Queensland; 2010.
O’Brien PE, MacDonald L, Anderson M, Brennan L, Brown WA. Long-term outcomes after bariatric surgery: fifteen-year follow-up of adjustable gastric banding and a systematic review of the bariatric surgical literature. Ann Surg. 2013;257:87–94.
pubmed: 23235396
doi: 10.1097/SLA.0b013e31827b6c02
Buchwald H, Avidor Y, Braunwald E, et al. Bariatric surgery: a systematic review and meta-analysis. JAMA. 2004;292:1724–37.
pubmed: 15479938
doi: 10.1001/jama.292.14.1724
Vaurs C, Dimeglio C, Charras L, Anduze Y, Chalret du Rieu M, Ritz P. Determinants of changes in muscle mass after bariatric surgery. Diabetes Metab. 2015;41:416–21.
pubmed: 26022386
doi: 10.1016/j.diabet.2015.04.003
Maggard MA, Shugarman LR, Suttorp M, Maglione M, Sugerman HJ, Livingston EH. Meta-analysis: surgical treatment of obesity. Ann Intern Med. 2005;142:547–59.
pubmed: 15809466
doi: 10.7326/0003-4819-142-7-200504050-00013
Carey DG, Pliego GJ, Raymond RL. Body composition and metabolic changes following bariatric surgery: effects on fat mass, lean mass and basal metabolic rate: six months to one-year follow-up. Obes Surg. 2006;16:1602–8.
pubmed: 17217636
doi: 10.1381/096089206779319347
Schollenberger AE, Karschin J, Meile T, Kuper MA, Konigsrainer A, Bischoff SC. Impact of protein supplementation after bariatric surgery: A randomized controlled double-blind pilot study. Nutrition. 2016;32:186–92.
pubmed: 26691769
doi: 10.1016/j.nut.2015.08.005
McArdle W. Exercise physiology, energy, nutrition, and human performance. Philadelphia: Lippincott Williams; & Wilkins; 2001.
Pedersen BK, Febbraio MA. Muscles, exercise and obesity: skeletal muscle as a secretory organ. Nat Rev Endocrinol. 2012;8:457.
pubmed: 22473333
pmcid: 22473333
doi: 10.1038/nrendo.2012.49
Teigen LM, Kuchnia AJ, Mourtzakis M, Earthman CP. The use of technology for estimating body composition:strengths and weaknesses of common modalities in a clinical setting. Nutr Clin Pract. 2017;32:20–9.
pubmed: 27834282
doi: 10.1177/0884533616676264
Earthman CP. Body composition tools for assessment of adult malnutrition at the bedside: a tutorial on research considerations and clinical applications. J Parenter Enter Nutr. 2015;39:787–822.
doi: 10.1177/0148607115595227
Kyle UG, Bosaeus I, De Lorenzo AD, Deurenberg P, Elia M, Gómez JM, et al. Bioelectrical impedance analysis-part I: review of principles and methods. Clin Nutr. 2004;23:1226–43.
pubmed: 15380917
doi: 10.1016/j.clnu.2004.06.004
Huang AC, Chen YY, Chuang CL, Chiang LM, Lu HS, Lin HC, et al. Cross-mode bioelectrical impedance analysis in a standing position for estimating fat-free mass validated against dual-energy x-ray absorptiometry. Nutr Res J. 2015;35:982–9.
doi: 10.1016/j.nutres.2015.08.005
Earthman C, Traughber D, Dobratz J, Howell W. Bioimpedance spectroscopy for clinical assessment of fluid distribution and body cell mass. Nutr Clin Pract. 2007;22:389–405.
pubmed: 17644693
doi: 10.1177/0115426507022004389
Sun G, French CR, Martin GR, Younghusband B, Green RC, Xie Y-g, et al. Comparison of multifrequency bioelectrical impedance analysis with dual-energy X-ray absorptiometry for assessment of percentage body fat in a large, healthy population. Am J Clin Nutr. 2005;81:74–8.
pubmed: 15640463
doi: 10.1093/ajcn/81.1.74
Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA Statement. Ann Intern Med 2009;151:264–9.
Whiting PF, Rutjes AS, Westwood ME, et al. Quadas-2: a revised tool for the quality assessment of diagnostic accuracy studies. Ann Intern Med. 2011;155:529–36.
pubmed: 22007046
pmcid: 22007046
doi: 10.7326/0003-4819-155-8-201110180-00009
WHO. World Health Organization BMI Classification 2018 (Available from: http://apps.who.int/bmi/index.jsp?introPage=intro_3.html ).
Pateyjohns IR, Brinkworth GD, Buckley JD, Noakes M, Clifton PM. Comparison of three bioelectrical impedance methods with DXA in overweight and obese men*. Obesity. 2006;14:2064–70.
pubmed: 17135624
doi: 10.1038/oby.2006.241
Berstad P, Randby A, Seim Ekeland G, Ulveland H, Omland T, Almendingen K. Body fat and fat-free mass measured by bioelectric impedance spectroscopy and dual-energy X-ray absorptiometry in obese and non-obese adults. Br J Nutr. 2012;107:1192–200.
pubmed: 21878141
doi: 10.1017/S000711451100417X
Ellegård L, Bertz F, Winkvist A, Bosaeus I, Brekke HK. Body composition in overweight and obese women postpartum: bioimpedance methods validated by dual energy X-ray absorptiometry and doubly labeled water. Eur J Clin Nutr. 2016;70:1181–8.
pubmed: 27026424
doi: 10.1038/ejcn.2016.50
Faria SL, Faria OP, Cardeal MDA, Ito MK. Validation study of multi-frequency bioelectrical impedance with dual-energy x-ray absorptiometry among obese patients. Obes Surg. 2014;24:1476–80.
pubmed: 24464546
doi: 10.1007/s11695-014-1190-5
Gába A, Kapuš O, Cuberek R, Botek M. Comparison of multi‐ and single‐frequency bioelectrical impedance analysis with dual‐energy X‐ray absorptiometry for assessment of body composition in post‐menopausal women: effects of body mass index and accelerometer‐determined physical activity. J Hum Nutr Diet. 2015;28:390–400.
pubmed: 25039938
doi: 10.1111/jhn.12257
Kim H-J, Gallagher D, Song M-Y. Comparison of body composition methods during weight loss in obese women using herbal formula. Am J Chin Med (Gard City N Y). 2005;33:851–8.
doi: 10.1142/S0192415X05003454
Panotopoulos G, Ruiz JC, Guy-Grand B, Basdevant A. Dual x-ray absorptiometry, bioelectrical impedance, and near infrared interactance in obese women. Med Sci Sports Exerc. 2001;33:665–70.
pubmed: 11283446
doi: 10.1097/00005768-200104000-00024
Shafer KJ, Siders WA, Johnson LK, Lukaski HC. Validity of segmental multiple-frequency bioelectrical impedance analysis to estimate body composition of adults across a range of body mass indexes. Nutrition. 2009;25:25–32.
pubmed: 18723322
doi: 10.1016/j.nut.2008.07.004
Thomson R, Brinkworth GD, Buckley JD, Noakes M, Clifton PM. Good agreement between bioelectrical impedance and dual-energy X-ray absorptiometry for estimating changes in body composition during weight loss in overweight young women. Clin Nutr. 2007;26:771–7.
pubmed: 17936443
doi: 10.1016/j.clnu.2007.08.003
Verdich C, Barbe P, Petersen M, Grau K, Ward L, Macdonald I, et al. Changes in body composition during weight loss in obese subjects in the NUGENOB study: Comparison of bioelectrical impedance vs. dual-energy X-ray absorptiometry. Diabetes Metab. 2011;37:222–9.
pubmed: 21236715
doi: 10.1016/j.diabet.2010.10.007
Ward LC, Dyer JM, Byrne NM, Sharpe KK, Hills AP. Validation of a three-frequency bioimpedance spectroscopic method for body composition analysis. Nutrition. 2007;23:657–64.
pubmed: 17679047
doi: 10.1016/j.nut.2007.06.009
Webber J, Donaldson M, Allison SP, Macdonald IA. A comparison of skinfold thickness, body mass index, bioelectrical impedance analysis and dual-energy X-ray absorptiometry in assessing body composition in obese subjects before and after weight loss. Clin Nutr. 1994;13:177–82.
pubmed: 16843379
doi: 10.1016/0261-5614(94)90098-1
Bosaeus M, Karlsson T, Holmäng A, Ellegård L. Accuracy of quantitative magnetic resonance and eight-electrode bioelectrical impedance analysis in normal weight and obese women. Clin Nutr. 2014;33:471–7.
pubmed: 23871192
doi: 10.1016/j.clnu.2013.06.017
Fulcher GR, Farrer M, Walker M, Rodham D, Clayton B, Alberti KM. A comparison of measurements of lean body mass derived by bioelectrical impedance, skinfold thickness and total body potassium. A study in obese and non-obese normal subjects. Scand J Clin Lab Invest. 1991;51:245–53.
pubmed: 1882177
doi: 10.3109/00365519109091611
Mager JR, Sibley SD, Beckman TR, Kellogg TA, Earthman CP. Multifrequency bioelectrical impedance analysis and bioimpedance spectroscopy for monitoring fluid and body cell mass changes after gastric bypass surgery. Clin Nutr. 2008;27:832–41.
pubmed: 18676066
pmcid: 4284052
doi: 10.1016/j.clnu.2008.06.007
Ritz P, Sallé A, Audran M, Rohmer V. Comparison of different methods to assess body composition of weight loss in obese and diabetic patients. Diabetes Res Clin Pract. 2007;77:405–11.
pubmed: 17306903
doi: 10.1016/j.diabres.2007.01.007
Cardeal Mde A, Faria SL, Faria OP, Facundes M, Ito MK. Diet-induced thermogenesis in postoperatve Roux-en-Y gastric bypass patients with weight regain. Surg Obes Relat Dis. 2016;12:1098–107.
doi: 10.1016/j.soard.2016.01.019
Moissl UM, Wabel P, Chamney PW, Besaeus I, Levin NW, Besy-Westphal A, et al. Body fluid volume determination via body composition spectroscopy in health and disease. Physiol Meas. 2006;2006:921–33.
doi: 10.1088/0967-3334/27/9/012
Cox-Reijven PL, Soeters PB. Validation of bio-impedance spectroscopy: effects of degree of obesity and ways of calculating volumes from measured resistance values. Int J Obes Relat Disord. 2000;24:271–80.
doi: 10.1038/sj.ijo.0801123
De Lorenzo A, Sasso GF, Andreoli A, Sorge R, Candeloro N, Cairella M. Improved prediction formula for total body water assessment in obese women. Int J Obes Relat Metab Disord. 1995;19:535–8.
pubmed: 7489022
Waki M, Kral JG, Mazariegos M, Wang J, Pierson RNJ, Heymsfield SB. Relative expansion of extracellular fluid in obese vs. nonobese women. Am J Physiol. 1991;261:E199–203.
pubmed: 1872382
Steijaert M, Deurenberg P, Van Gaal L, De Leeuw I. The use of multi-frequency impedance to determine total body water and extracellular water in obese and lean female individuals. Int J Obes Relat Metab Disord. 1997;21:930–4.
pubmed: 9347412
doi: 10.1038/sj.ijo.0800497
Ritz P. Body water spaces and cellular hydration during healthy aging. Ann NY Acad Sci. 2000;904:474–83.
pubmed: 10865791
doi: 10.1111/j.1749-6632.2000.tb06502.x
Das SK, Roberts JJ, Kehayias J, Wang LK, Hsu SA, Shikora EA. Body composition assessment in extreme obesity and after massive weight loss induced by gastric bypass surgery. Am J Physiol- Endocrinol Metab. 2003;284:E1080–E8.
pubmed: 12604503
doi: 10.1152/ajpendo.00185.2002
Chumlea WC, Baumgartner RN, Roche AF. Specific resistivity used to estimate fat-free mass from segmental body measures of bioelectric impedance. Am J Clin Nutr. 1988;48:7–15.
pubmed: 3389332
doi: 10.1093/ajcn/48.1.7
Bracco D, Thiébaud D, Chioléro RL, Landry M, Burckhardt P, Schutz Y. Segmental body composition assessed by bioelectrical impedance analysis and DEXA in humans. J Appl Physiol. 1996;81:2580–7.
pubmed: 9018509
doi: 10.1152/jappl.1996.81.6.2580
Baumgartner RN, Ross R, Heymsfield SB. Does adipose tissue influence bioelectric impedance in obese men and women? J Appl Physiol. 1998;84:257–62.
pubmed: 9451644
doi: 10.1152/jappl.1998.84.1.257
Sartorio A, Malavolti M, Agosti F, Marinone PG, Caiti O, Battistini N, et al. Body water distribution in severe obesity and its assessment from eight-polar bioelectrical impedance analysis. Eur J Clin Nutr. 2005;59:155–60.
pubmed: 15340370
doi: 10.1038/sj.ejcn.1602049