Genipin protects against H2O2-induced oxidative damage in retinal pigment epithelial cells by promoting Nrf2 signaling.
Apoptosis
/ drug effects
Cell Line
Cell Survival
/ drug effects
Cytoprotection
/ drug effects
Epithelial Cells
/ drug effects
Gene Silencing
Humans
Hydrogen Peroxide
/ pharmacology
Iridoids
/ pharmacology
NF-E2-Related Factor 2
/ genetics
Oxidation-Reduction
/ drug effects
Oxidative Stress
/ drug effects
Reactive Oxygen Species
/ metabolism
Retinal Pigment Epithelium
/ cytology
Signal Transduction
/ drug effects
Journal
International journal of molecular medicine
ISSN: 1791-244X
Titre abrégé: Int J Mol Med
Pays: Greece
ID NLM: 9810955
Informations de publication
Date de publication:
Feb 2019
Feb 2019
Historique:
received:
19
07
2018
accepted:
04
12
2018
pubmed:
21
12
2018
medline:
21
5
2019
entrez:
21
12
2018
Statut:
ppublish
Résumé
Oxidative stress serves a vital function in the pathogenesis of age‑related macular degeneration (AMD); genipin (GP) possesses antioxidative properties. The present study aimed to investigate the effects of GP on retinal pigment epithelial (RPE) cells induced by H2O2 and the underlying mechanism. ARPE‑19 cells were subjected to H2O2 treatment to induce oxidative damage. Cell viability was determined via an MTT assay. Reactive oxygen species (ROS) levels and cell apoptosis were detected by flow cytometry. Nuclear factor‑erythroid 2‑related factor‑2 (Nrf2) signaling‑associated and the expression of apoptosis‑associated factors were measured using reverse transcription‑quantitative polymerase chain reaction assay and western blotting. The results revealed that 200 µM H2O2 and 30 µM GP were determined to be the optimal concentrations for subsequent experimentation. GP reversed the inhibitory effects of H2O2 by promoting cell viability, attenuating ROS accumulation and cell apoptosis, and increased the expression of Nrf2, heme oxygenase‑1 (HO‑1) and NAD(P)H: Quinine oxidoreductase 1 (NQO1); Nrf2 silencing inhibited HO‑1 and NQO1 expression. In addition, Nrf2 silencing enhanced the effects of H2O2 by promoting ROS production and cell apoptosis. Compared with H2O2, Nrf2 silencing further decreased the expression levels of B‑cell lymphoma‑2 (Bcl‑2), but increased that of Bcl‑2‑associated X protein and cleaved‑caspase‑3. The results of the present study revealed that Nrf2 silencing attenuated the protective effects of GP on H2O2‑induced injury in ARPE‑19 cells by promoting apoptosis and oxidation. Collectively, GP attenuated oxidative damage induced by H2O2 in ARPE‑19 cells. Furthermore, the molecular mechanism may be associated with the Nrf2 signaling pathway. The findings of the present study nay provide insight into a potential therapeutic agent for the treatment of AMD.
Identifiants
pubmed: 30569096
doi: 10.3892/ijmm.2018.4027
pmc: PMC6317649
doi:
Substances chimiques
Iridoids
0
NF-E2-Related Factor 2
0
Reactive Oxygen Species
0
genipin
A3V2NE52YG
Hydrogen Peroxide
BBX060AN9V
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
936-944Références
Annu Rev Pharmacol Toxicol. 2007;47:89-116
pubmed: 16968214
Mol Med Rep. 2017 Aug;16(2):2069-2074
pubmed: 28656238
Curr Biol. 2014 May 19;24(10):R453-62
pubmed: 24845678
Prog Neurobiol. 2013 Jan;100:30-47
pubmed: 23025925
Biochem Biophys Res Commun. 2018 Jan 15;495(3):2171-2177
pubmed: 29253569
Mol Vis. 2017 Jul 27;23:520-528
pubmed: 28761325
Biomed Pharmacother. 2017 Jan;85:136-140
pubmed: 27930977
Exp Eye Res. 2017 Jul;160:45-55
pubmed: 28461203
Exp Eye Res. 2014 Feb;119:111-4
pubmed: 24216314
Toxicol Appl Pharmacol. 2017 Aug 1;328:25-33
pubmed: 28477916
J Biol Chem. 2009 May 15;284(20):13291-5
pubmed: 19182219
J Biol Chem. 2014 Mar 28;289(13):8735-41
pubmed: 24515117
PeerJ. 2017 Jul 31;5:e3642
pubmed: 28785522
J Biochem Mol Toxicol. 2018 May;32(5):e22052
pubmed: 29687528
Chem Pharm Bull (Tokyo). 2000 May;48(5):746-8
pubmed: 10823717
Cell Physiol Biochem. 2017;43(5):1855-1865
pubmed: 29049992
Biochim Biophys Acta. 2013 Mar;1833(3):672-9
pubmed: 23124112
Mol Med Rep. 2017 Jun;15(6):4360-4373
pubmed: 28487985
J Nutr Biochem. 2015 Dec;26(12):1401-13
pubmed: 26419687
Sci Rep. 2016 May 31;6:26322
pubmed: 27240523
Free Radic Biol Med. 2013 Dec;65:1340-1351
pubmed: 24120970
Fiziol Zh. 2009;55(5):28-34
pubmed: 20095381
Biochem Biophys Res Commun. 2015 Dec 25;468(4):541-7
pubmed: 26505797
Redox Biol. 2014 Jan 18;2:289-95
pubmed: 24494204
J Pharmacol Sci. 2014;124(3):344-53
pubmed: 24646621
Pharmacol Rep. 2006 May-Jun;58(3):353-63
pubmed: 16845209
Oncol Rep. 2012 Feb;27(2):567-72
pubmed: 22020372
Fitoterapia. 2016 Jul;112:244-53
pubmed: 27343367
Brain Res. 2015 Apr 24;1605:39-48
pubmed: 25698615
Biomaterials. 2013 Jun;34(18):4466-79
pubmed: 23499480
Free Radic Biol Med. 2016 Feb;91:93-104
pubmed: 26689473
Int J Ophthalmol. 2017 Apr 18;10(4):507-514
pubmed: 28503420
Mol Immunol. 2013 Jun;54(2):122-31
pubmed: 23267850
Autophagy. 2014;10(11):1989-2005
pubmed: 25484094
Biomed Pharmacother. 2017 Apr;88:124-133
pubmed: 28103505
Methods. 2001 Dec;25(4):402-8
pubmed: 11846609
Int J Mol Sci. 2010 Nov 02;11(11):4348-60
pubmed: 21151442
N Engl J Med. 2008 Jun 12;358(24):2606-17
pubmed: 18550876
J Alzheimers Dis. 2014;42 Suppl 3:S125-52
pubmed: 25056458
Zhong Yao Cai. 2014 Feb;37(2):243-51
pubmed: 25095344
Int J Hyperthermia. 2014 Nov;30(7):513-23
pubmed: 25354680
Ren Fail. 2014 Sep;36(8):1298-303
pubmed: 24964191
Pharm Biol. 2010 Dec;48(12):1354-60
pubmed: 20738175
Oxid Med Cell Longev. 2018 Feb 1;2018:8374647
pubmed: 29484106
J Neurochem. 2017 Nov;143(3):375-388
pubmed: 28892569
PLoS One. 2011;6(9):e24792
pubmed: 21935467