Hypoxic and Cold Adaptation Insights from the Himalayan Marmot Genome.
Bioinformatics
Evolutionary Biology
Genetics
Omics
Physiology
Journal
iScience
ISSN: 2589-0042
Titre abrégé: iScience
Pays: United States
ID NLM: 101724038
Informations de publication
Date de publication:
25 Jan 2019
25 Jan 2019
Historique:
received:
06
08
2018
revised:
19
11
2018
accepted:
20
11
2018
pubmed:
26
12
2018
medline:
26
12
2018
entrez:
25
12
2018
Statut:
ppublish
Résumé
The Himalayan marmot (Marmota himalayana) is a hibernating mammal that inhabits the high-elevation regions of the Himalayan mountains. Here we present a draft genome of the Himalayan marmot, with a total assembly length of 2.47 Gb. Phylogenetic analyses showed that the Himalayan marmot diverged from the Mongolian marmot approximately 1.98 million years ago. Transcriptional changes during hibernation included genes responsible for fatty acid metabolism in liver and genes involved in complement and coagulation cascades and stem cell pluripotency pathways in brain. Two selective sweep genes, Slc25a14 and ψAamp, showed apparent genotyping differences between low- and high-altitude populations. As a processed pseudogene, ψAamp may be biologically active to influence the stability of Aamp through competitive microRNA binding. These findings shed light on the molecular and genetic basis underlying adaptation to extreme environments in the Himalayan marmot.
Identifiants
pubmed: 30581096
pii: S2589-0042(18)30224-4
doi: 10.1016/j.isci.2018.11.034
pmc: PMC6354217
pii:
doi:
Types de publication
Journal Article
Langues
eng
Pagination
519-530Commentaires et corrections
Type : ErratumIn
Informations de copyright
Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.
Références
FASEB J. 2000 Aug;14(11):1611-8
pubmed: 10928996
J Neurochem. 2001 Nov;79(3):658-68
pubmed: 11701769
High Alt Med Biol. 2001 Winter;2(4):489-99
pubmed: 11809089
Mol Genet Metab. 2002 Apr;75(4):369-73
pubmed: 12051969
Syst Biol. 1999 Dec;48(4):715-34
pubmed: 12066297
Syst Biol. 2003 Apr;52(2):186-205
pubmed: 12746146
Physiol Genomics. 2005 Dec 14;24(1):13-22
pubmed: 16249311
EMBO J. 2006 Mar 22;25(6):1219-30
pubmed: 16498402
Cell. 2006 Aug 25;126(4):663-76
pubmed: 16904174
RNA. 2008 Jul;14(7):1297-317
pubmed: 18463285
Nature. 2010 Jan 21;463(7279):311-7
pubmed: 20010809
Free Radic Biol Med. 2010 Sep 15;49(6):1023-35
pubmed: 20600837
BMC Genomics. 2011 Mar 31;12:171
pubmed: 21453527
Nat Genet. 2012 Jul 01;44(8):946-9
pubmed: 22751099
Nat Genet. 2013 Jan;45(1):67-71
pubmed: 23242367
Curr Biol. 2013 Mar 4;23(5):R188-93
pubmed: 23473557
Nat Commun. 2013;4:1858
pubmed: 23673643
Nat Commun. 2013;4:2212
pubmed: 23962925
Genome Res. 2014 Aug;24(8):1308-15
pubmed: 24721644
Nat Commun. 2014 Sep 18;5:4906
pubmed: 25232965
Nat Genet. 2014 Dec;46(12):1303-10
pubmed: 25362486
Proc Natl Acad Sci U S A. 2015 Feb 3;112(5):1607-12
pubmed: 25605929
Curr Top Microbiol Immunol. 2016;394:111-26
pubmed: 25982975
Clin Chim Acta. 2015 Dec 7;451(Pt B):191-8
pubmed: 26436483
Nat Commun. 2015 Dec 22;6:10283
pubmed: 26691338
Ann Biomed Eng. 2016 Mar;44(3):830-2
pubmed: 26715208
Development. 2016 Mar 15;143(6):936-49
pubmed: 26893347
J Biol Chem. 2017 Feb 3;292(5):1951-1969
pubmed: 28011645
Cell. 2018 May 3;173(4):851-863.e16
pubmed: 29576452
Front Physiol. 2018 May 23;9:557
pubmed: 29875677
Stem Cell Res Ther. 2018 Jun 15;9(1):164
pubmed: 29907129
Experientia. 1968 Jul 15;24(7):740-2
pubmed: 5705258
Mol Phylogenet Evol. 1993 Dec;2(4):330-6
pubmed: 8049781