Chromatin regulatory mechanisms and therapeutic opportunities in cancer.
Journal
Nature cell biology
ISSN: 1476-4679
Titre abrégé: Nat Cell Biol
Pays: England
ID NLM: 100890575
Informations de publication
Date de publication:
02 2019
02 2019
Historique:
received:
16
07
2018
accepted:
30
11
2018
pubmed:
4
1
2019
medline:
16
4
2019
entrez:
4
1
2019
Statut:
ppublish
Résumé
Research over the past several decades has unmasked a major contribution of disrupted chromatin regulatory processes to human disease, particularly cancer. Advances in genome-wide technologies have highlighted frequent mutations in genes encoding chromatin-associated proteins, identified unexpected synthetic lethal opportunities and enabled increasingly comprehensive structural and functional dissection. Here, we review recent progress in our understanding of oncogenic mechanisms at each level of chromatin organization and regulation, and discuss new strategies towards therapeutic intervention.
Identifiants
pubmed: 30602726
doi: 10.1038/s41556-018-0258-1
pii: 10.1038/s41556-018-0258-1
pmc: PMC6755910
mid: NIHMS1046838
doi:
Substances chimiques
Chromatin
0
Histones
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Review
Langues
eng
Sous-ensembles de citation
IM
Pagination
152-161Subventions
Organisme : NCI NIH HHS
ID : DP2 CA195762
Pays : United States
Organisme : NCI NIH HHS
ID : R01 CA237241
Pays : United States
Organisme : NIGMS NIH HHS
ID : T32 GM095450
Pays : United States
Références
Annunziato, A. DNA packaging: nucleosomes and chromatin. Nat. Educ. 1, 26 (2008).
Schübeler, D. Function and information content of DNA methylation. Nature 517, 321–326 (2015).
pubmed: 25592537
doi: 10.1038/nature14192
Tessarz, P. & Kouzarides, T. Histone core modifications regulating nucleosome structure and dynamics. Nat. Rev. Mol. Cell Biol. 15, 703–708 (2014).
pubmed: 25315270
doi: 10.1038/nrm3890
Clapier, C. R. & Cairns, B. R. The biology of chromatin remodeling complexes. Annu. Rev. Biochem. 78, 273–304 (2009).
pubmed: 19355820
doi: 10.1146/annurev.biochem.77.062706.153223
Beck, S. et al. A blueprint for an International Cancer Epigenome Consortium. A report from the AACR Cancer Epigenome Task Force. Cancer Res. 72, 6319–6324 (2012).
pubmed: 23188507
doi: 10.1158/0008-5472.CAN-12-3658
The Cancer Genome Atlas Research Network. et al. The Cancer Genome Atlas pan-cancer analysis project. Nature Genet. 45, 1113–1120 (2013).
doi: 10.1038/ng.2764
Polak, P. et al. Cell-of-origin chromatin organization shapes the mutational landscape of cancer. Nature 518, 360–364 (2015).
pubmed: 25693567
pmcid: 4405175
doi: 10.1038/nature14221
Venkatesh, S. & Workman, J. L. Histone exchange, chromatin structure and the regulation of transcription. Nat. Rev. Mol. Cell Biol. 16, 178–189 (2015).
pubmed: 25650798
doi: 10.1038/nrm3941
Fyodorov, D. V., Zhou, B.-R., Skoultchi, A. I. & Bai, Y. Emerging roles of linker histones in regulating chromatin structure and function. Nat. Rev. Mol. Cell Biol. 19, 192–206 (2018).
pubmed: 29018282
doi: 10.1038/nrm.2017.94
Hergeth, S. P. & Schneider, R. The H1 linker histones: multifunctional proteins beyond the nucleosomal core particle. EMBO Rep. 16, 1439–1453 (2015).
pubmed: 26474902
pmcid: 4641498
doi: 10.15252/embr.201540749
Kohli, R. M. & Zhang, Y. TET enzymes, TDG and the dynamics of DNA demethylation. Nature 502, 472–479 (2013).
pubmed: 24153300
pmcid: 4046508
doi: 10.1038/nature12750
Audia, J. E. & Campbell, R. M. Histone modifications and cancer. Cold Spring Harb. Perspect. Biol. 8, a019521 (2016).
pubmed: 27037415
pmcid: 4817802
doi: 10.1101/cshperspect.a019521
Kadoch, C. et al. Dynamics of BAF–Polycomb complex opposition on heterochromatin in normal and oncogenic states. Nat. Genet. 49, 213–222 (2017).
pubmed: 27941796
doi: 10.1038/ng.3734
Stanton, B. Z. et al. Smarca4 ATPase mutations disrupt direct eviction of PRC1 from chromatin. Nat. Genet. 49, 282–288 (2017).
pubmed: 27941795
doi: 10.1038/ng.3735
Riising, E. M. et al. Gene silencing triggers Polycomb repressive complex 2 recruitment to CpG islands genome wide. Mol. Cell 55, 347–360 (2014).
pubmed: 24999238
doi: 10.1016/j.molcel.2014.06.005
Jones, P. A. Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat. Rev. Genet. 13, 484–492 (2012).
doi: 10.1038/nrg3230
pubmed: 22641018
Collings, C. K. & Anderson, J. N. Links between DNA methylation and nucleosome occupancy in the human genome. Epigenet. Chromatin 10, 18 (2017).
Kulis, M. & Esteller, M. DNA methylation and cancer. Adv. Genet. 70, 27–56 (2010).
pubmed: 20920744
doi: 10.1016/B978-0-12-380866-0.60002-2
Lyko, F. The DNA methyltransferase family: a versatile toolkit for epigenetic regulation. Nat. Rev. Genet. 19, 81–92 (2018).
pubmed: 29033456
doi: 10.1038/nrg.2017.80
Okano, M., Bell, D. W., Haber, D. A. & Li, E. DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 99, 247–257 (1999).
pubmed: 10555141
doi: 10.1016/S0092-8674(00)81656-6
Okano, M., Xie, S. & Li, E. Cloning and characterization of a family of novel mammalian DNA (cytosine-5) methyltransferases. Nat. Genet. 19, 219–220 (1998).
pubmed: 9662389
doi: 10.1038/890
Sen, G. L., Reuter, J. A., Webster, D. E., Zhu, L. & Khavari, P. A. DNMT1 maintains progenitor function in self-renewing somatic tissue. Nature 463, 563–567 (2010).
pubmed: 20081831
pmcid: 3050546
doi: 10.1038/nature08683
Yap, D. B. et al. Somatic mutations at EZH2 Y641 act dominantly through a mechanism of selectively altered PRC2 catalytic activity, to increase H3K27 trimethylation. Blood 117, 2451–2459 (2011).
pubmed: 21190999
pmcid: 3062411
doi: 10.1182/blood-2010-11-321208
Lee, P. P. et al. A critical role for Dnmt1 and DNA methylation in T cell development, function, and survival. Immunity 15, 763–774 (2001).
pubmed: 11728338
doi: 10.1016/S1074-7613(01)00227-8
Peters, S. L. et al. An essential role for Dnmt1 in the prevention and maintenance of MYC-induced T-cell lymphomas. Mol. Cell Biol. 33, 4321–4233 (2013).
pubmed: 24001767
pmcid: 3811897
doi: 10.1128/MCB.00776-13
Laird, P. W. et al. Suppression of intestinal neoplasia by DNA hypomethylation. Cell 81, 197–205 (1995).
pubmed: 7537636
doi: 10.1016/0092-8674(95)90329-1
Bröske, A.-M. et al. DNA methylation protects hematopoietic stem cell multipotency from myeloerythroid restriction. Nat. Genet. 41, 1207–1215 (2009).
pubmed: 19801979
doi: 10.1038/ng.463
Kim, M. S., Kim, Y. R., Yoo, N. J. & Lee, S. H. Mutational analysis of DNMT3A gene in acute leukemias and common solid cancers. APMIS 121, 85–94 (2012).
pubmed: 23031157
doi: 10.1111/j.1600-0463.2012.02940.x
Kandoth, C. et al. Mutational landscape and significance across 12 major cancer types. Nature 502, 333–339 (2013).
pubmed: 24132290
pmcid: 3927368
doi: 10.1038/nature12634
Forbes, S. A. et al. COSMIC: mining complete cancer genomes in the Catalogue of Somatic Mutations in Cancer. Nucleic Acids Res. 39, D945–D950 (2011).
pubmed: 20952405
doi: 10.1093/nar/gkq929
Yang, L., Rau, R. & Goodell, M. A. DNMT3A in haematological malignancies. Nat. Rev. Cancer 15, 152–165 (2015).
pubmed: 25693834
pmcid: 5814392
doi: 10.1038/nrc3895
The Cancer Genome Atlas Research Network. Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. N. Engl. J. Med. 368, 2059–2074 (2013).
pmcid: 3767041
doi: 10.1056/NEJMoa1301689
Cerami, E. et al. The cBio Cancer Genomics Portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2, 401–404 (2012).
pubmed: 22588877
doi: 10.1158/2159-8290.CD-12-0095
Gao, J. et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci. Signal. 6, pl1 (2013).
pubmed: 23550210
pmcid: 4160307
doi: 10.1126/scisignal.2004088
Liao, J. et al. Targeted disruption of DNMT1, DNMT3A and DNMT3B in human embryonic stem cells. Nat. Genet. 47, 469–478 (2015).
pubmed: 25822089
pmcid: 4414868
doi: 10.1038/ng.3258
Baubec, T. et al. Genomic profiling of DNA methyltransferases reveals a role for DNMT3B in genic methylation. Nature 520, 243–247 (2015).
pubmed: 25607372
doi: 10.1038/nature14176
Zhang, Z.-M. et al. Structural basis for DNMT3A-mediated de novo DNA methylation. Nature 554, 387–391 (2018).
pubmed: 29414941
pmcid: 5814352
doi: 10.1038/nature25477
Ishiyama, S. et al. Structure of the Dnmt1 reader module complexed with a unique two-mono-ubiquitin mark on histone H3 reveals the basis for DNA methylation maintenance. Mol. Cell 68, 350–360.e7 (2017).
pubmed: 29053958
doi: 10.1016/j.molcel.2017.09.037
Shapiro, R. M. & Lazo-Langner, A. Systematic review of azacitidine regimens in myelodysplastic syndrome and acute myeloid leukemia. BMC Hematol. 18, 3 (2018).
pubmed: 29435331
pmcid: 5793426
doi: 10.1186/s12878-017-0094-8
Dombret, H. et al. International phase 3 study of azacitidine vs conventional care regimens in older patients with newly diagnosed AML with>30% blasts. Blood 126, 291–299 (2015).
pubmed: 25987659
pmcid: 4504945
doi: 10.1182/blood-2015-01-621664
Rasmussen, K. D. & Helin, K. Role of TET enzymes in DNA methylation, development, and cancer. Genes Dev. 30, 733–750 (2016).
pubmed: 27036965
pmcid: 4826392
doi: 10.1101/gad.276568.115
Wu, H. & Zhang, Y. Reversing DNA methylation: mechanisms, genomics, and biological functions. Cell 156, 45–68 (2014).
pubmed: 24439369
pmcid: 3938284
doi: 10.1016/j.cell.2013.12.019
Hu, L. et al. Crystal structure of TET2–DNA complex: insight into TET-mediated 5mC oxidation. Cell 155, 1545–1555 (2013).
pubmed: 24315485
doi: 10.1016/j.cell.2013.11.020
Xu, Y. et al. Genome-wide regulation of 5hmC, 5mC, and gene expression by Tet1 hydroxylase in mouse embryonic stem cells. Mol. Cell 42, 451–464 (2011).
pubmed: 21514197
pmcid: 3099128
doi: 10.1016/j.molcel.2011.04.005
Jin, S.-G. et al. Tet3 reads 5-carboxylcytosine through its CXXC domain and is a potential guardian against neurodegeneration. Cell Rep. 14, 493–505 (2016).
pubmed: 26774490
pmcid: 4731272
doi: 10.1016/j.celrep.2015.12.044
Jiang, X. et al. Targeted inhibition of STAT/TET1 axis as a therapeutic strategy for acute myeloid leukemia. Nat. Commun. 8, 2099 (2017).
pubmed: 29235481
pmcid: 5727390
doi: 10.1038/s41467-017-02290-w
Jenuwein, T. & Allis, C. D. Translating the histone code. Science 293, 1074–1080 (2001).
pubmed: 11498575
doi: 10.1126/science.1063127
Schreiber, S. L. & Bernstein, B. E. Signaling network model of chromatin. Cell 111, 771–778 (2002).
pubmed: 12526804
doi: 10.1016/S0092-8674(02)01196-0
Zhao, Y. & Garcia, B. A. Comprehensive catalog of currently documented histone modifications. Cold Spring Harb. Perspect. Biol. 7, a025064 (2015).
pubmed: 26330523
pmcid: 4563710
doi: 10.1101/cshperspect.a025064
Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl Acad. Sci. USA 102, 15545–15550 (2005).
pubmed: 16199517
doi: 10.1073/pnas.0506580102
pmcid: 1239896
Liberzon, A. et al. Molecular signatures database (MSigDB) 3.0. Bioinformatics 27, 1739–1740 (2011).
pubmed: 21546393
pmcid: 3106198
doi: 10.1093/bioinformatics/btr260
Khare, S. P. et al. HIstome—a relational knowledgebase of human histone proteins and histone modifying enzymes. Nucleic Acids Res. 40, D337–D342 (2011).
pubmed: 22140112
pmcid: 3245077
doi: 10.1093/nar/gkr1125
Dawson, M. A. & Kouzarides, T. Cancer epigenetics: from mechanism to therapy. Cell 150, 12–27 (2012).
pubmed: 22770212
doi: 10.1016/j.cell.2012.06.013
Bannister, A. J. & Kouzarides, T. Regulation of chromatin by histone modifications. Cell Res. 21, 381–395 (2011).
pubmed: 21321607
pmcid: 3193420
doi: 10.1038/cr.2011.22
Bennett, R. L. & Licht, J. D. Targeting epigenetics in cancer. Annu. Rev. Pharmacol. Toxicol. 58, 187–207 (2018).
pubmed: 28992434
doi: 10.1146/annurev-pharmtox-010716-105106
Seto, E. & Yoshida, M. Erasers of histone acetylation: the histone deacetylase enzymes. Cold Spring Harb. Perspect. Biol. 6, a018713 (2014).
pubmed: 24691964
pmcid: 3970420
doi: 10.1101/cshperspect.a018713
West, A. C. & Johnstone, R. W. New and emerging HDAC inhibitors for cancer treatment. J. Clin. Invest. 124, 30–39 (2014).
pubmed: 24382387
pmcid: 3871231
doi: 10.1172/JCI69738
Licht, J. D. AML1 and the AML1–ETO fusion protein in the pathogenesis of t(8;21) AML. Oncogene 20, 5660–5679 (2001).
pubmed: 11607817
doi: 10.1038/sj.onc.1204593
Liu, Y. et al. The tetramer structure of the Nervy homology two domain, NHR2, is critical for AML1/ETO’s activity. Cancer Cell 9, 249–260 (2006).
pubmed: 16616331
doi: 10.1016/j.ccr.2006.03.012
Di Croce, L. et al. Methyltransferase recruitment and DNA hypermethylation of target promoters by an oncogenic transcription factor. Science 295, 1079–1082 (2002).
pubmed: 11834837
doi: 10.1126/science.1065173
Suraweera, A., O’Byrne, K. J. & Richard, D. J. Combination therapy with histone deacetylase inhibitors (HDACi) for the treatment of cancer: achieving the full therapeutic potential of HDACi. Front. Oncol. 8, 92 (2018).
pubmed: 29651407
pmcid: 5884928
doi: 10.3389/fonc.2018.00092
Li, Y. & Seto, E. HDACs and HDAC inhibitors in cancer development and therapy. Cold Spring Harb. Perspect. Med. 6, a026831 (2016).
pubmed: 27599530
pmcid: 5046688
doi: 10.1101/cshperspect.a026831
Laugesen, A., Højfeldt, J. W. & Helin, K. Role of the Polycomb repressive complex 2 (PRC2) in transcriptional regulation and cancer. Cold Spring Harb. Perspect. Med. 6, a026575 (2016).
pubmed: 27449971
pmcid: 5008062
doi: 10.1101/cshperspect.a026575
Chittock, E. C., Latwiel, S., Miller, T. C. R. & Müller, C. W. Molecular architecture of Polycomb repressive complexes. Biochem. Soc. Trans. 45, 193–205 (2017).
pubmed: 28202673
pmcid: 5310723
doi: 10.1042/BST20160173
Margueron, R. & Reinberg, D. The Polycomb complex PRC2 and its mark in life. Nature 469, 343–349 (2011).
pubmed: 21248841
pmcid: 3760771
doi: 10.1038/nature09784
Comet, I., Riising, E. M., Leblanc, B. & Helin, K. Maintaining cell identity: PRC2-mediated regulation of transcription and cancer. Nat. Rev. Cancer 16, 803–810 (2016).
pubmed: 27658528
doi: 10.1038/nrc.2016.83
Vo, B. T. et al. Inactivation of Ezh2 upregulates Gfi1 and drives aggressive Myc-driven group 3 medulloblastoma. Cell Rep. 18, 2907–2917 (2017).
pubmed: 28329683
pmcid: 5415387
doi: 10.1016/j.celrep.2017.02.073
Bracken, A. P., Dietrich, N., Pasini, D., Hansen, K. H. & Helin, K. Genome-wide mapping of Polycomb target genes unravels their roles in cell fate transitions. Genes Dev. 20, 1123–1136 (2006).
pubmed: 16618801
pmcid: 1472472
doi: 10.1101/gad.381706
Gao, S.-B. et al. EZH2 represses target genes through H3K27-dependent and H3K27-independent mechanisms in hepatocellular carcinoma. Mol. Cancer Res. 12, 1388–1397 (2014).
pubmed: 24916103
doi: 10.1158/1541-7786.MCR-14-0034
Puda, A. et al. Frequent deletions of JARID2 in leukemic transformation of chronic myeloid malignancies. Am. J. Hematol. 87, 245–250 (2011).
pubmed: 22190018
doi: 10.1002/ajh.22257
Ntziachristos, P. et al. Genetic inactivation of the Polycomb repressive complex 2 in T cell acute lymphoblastic leukemia. Nat. Med. 18, 298–302 (2012).
pubmed: 22237151
pmcid: 3274628
doi: 10.1038/nm.2651
Score, J. et al. Inactivation of Polycomb repressive complex 2 components in myeloproliferative and myelodysplastic/myeloproliferative neoplasms. Blood 119, 1208–1213 (2012).
pubmed: 22053108
doi: 10.1182/blood-2011-07-367243
Lee, W. et al. PRC2 is recurrently inactivated through EED or SUZ12 loss in malignant peripheral nerve sheath tumors. Nat. Genet. 46, 1227–1232 (2014).
pubmed: 25240281
pmcid: 4249650
doi: 10.1038/ng.3095
Bachmann, I. M. et al. EZH2 expression is associated with high proliferation rate and aggressive tumor subgroups in cutaneous melanoma and cancers of the endometrium, prostate, and breast. J. Clin. Oncol. 24, 268–273 (2006).
pubmed: 16330673
doi: 10.1200/JCO.2005.01.5180
Bödör, C. et al. EZH2 mutations are frequent and represent an early event in follicular lymphoma. Blood 122, 3165–3168 (2013).
pubmed: 24052547
pmcid: 3814734
doi: 10.1182/blood-2013-04-496893
Morin, R. D. et al. Somatic mutations altering EZH2 (Tyr641) in follicular and diffuse large B-cell lymphomas of germinal-center origin. Nat. Genet. 42, 181–185 (2010).
pubmed: 20081860
pmcid: 2850970
doi: 10.1038/ng.518
Yap, D. B. et al. Somatic mutations at EZH2 Y641 act dominantly through a mechanism of selectively altered PRC2 catalytic activity, to increase H3K27 trimethylation. Blood 117, 2451–2459 (2010).
pubmed: 21190999
doi: 10.1182/blood-2010-11-321208
Justin, N. et al. Structural basis of oncogenic histone H3K27M inhibition of human Polycomb repressive complex 2. Nat. Commun. 7, 11316 (2016).
pubmed: 27121947
pmcid: 4853476
doi: 10.1038/ncomms11316
Margueron, R. et al. Role of the Polycomb protein EED in the propagation of repressive histone marks. Nature 461, 762–767 (2009).
pubmed: 19767730
pmcid: 3772642
doi: 10.1038/nature08398
Sanulli, S. et al. Jarid2 methylation via the PRC2 complex regulates H3K27me3 deposition during cell differentiation. Mol. Cell 57, 769–783 (2015).
pubmed: 25620564
pmcid: 4352895
doi: 10.1016/j.molcel.2014.12.020
Lee, C.-H. et al. Allosteric activation dictates PRC2 activity independent of its recruitment to chromatin. Mol. Cell 70, 422–434 (2018).
pubmed: 29681499
doi: 10.1016/j.molcel.2018.03.020
pmcid: 5935545
Brooun, A. et al. Polycomb repressive complex 2 structure with inhibitor reveals a mechanism of activation and drug resistance. Nat. Commun. 7, 11384 (2016).
pubmed: 27122193
pmcid: 4853478
doi: 10.1038/ncomms11384
Jiao, L. & Liu, X. Structural basis of histone H3K27 trimethylation by an active Polycomb repressive complex 2. Science 350, aac4383 (2015).
pubmed: 26472914
pmcid: 5220110
doi: 10.1126/science.aac4383
Arora, S. et al. EZH2 inhibitors are broadly efficacious in multiple myeloma as single agent and in combination with standard of care therapeutics. Blood 128, 5672 (2016).
doi: 10.1182/blood.V128.22.5672.5672
Italiano, A. et al. Tazemetostat, an EZH2 inhibitor, in relapsed or refractory B-cell non-Hodgkin lymphoma and advanced solid tumours: a first-in-human, open-label, phase 1 study. Lancet Oncol. 19, 649–659 (2018).
pubmed: 29650362
doi: 10.1016/S1470-2045(18)30145-1
Gao, Z. et al. PCGF homologs, CBX proteins, and RYBP define functionally distinct PRC1 family complexes. Mol. Cell 45, 344–356 (2012).
pubmed: 22325352
pmcid: 3293217
doi: 10.1016/j.molcel.2012.01.002
Bernstein, E. et al. Mouse Polycomb proteins bind differentially to methylated histone H3 and RNA and are enriched in facultative heterochromatin. Mol. Cell Biol. 26, 2560–2569 (2006).
pubmed: 16537902
pmcid: 1430336
doi: 10.1128/MCB.26.7.2560-2569.2006
Morey, L. et al. Nonoverlapping functions of the Polycomb group Cbx family of proteins in embryonic stem cells. Cell Stem Cell 10, 47–62 (2012).
pubmed: 22226355
doi: 10.1016/j.stem.2011.12.006
McGinty, R. K., Henrici, R. C. & Tan, S. Crystal structure of the PRC1 ubiquitylation module bound to the nucleosome. Nature 514, 591–596 (2014).
pubmed: 25355358
pmcid: 4215650
doi: 10.1038/nature13890
Gray, F. et al. BMI1 regulates PRC1 architecture and activity through homo- and hetero-oligomerization. Nat. Commun. 7, 13343 (2016).
pubmed: 27827373
pmcid: 5105191
doi: 10.1038/ncomms13343
Abdouh, M., Hanna, R., El Hajjar, J., Flamier, A. & Bernier, G. The Polycomb repressive complex 1 protein BMI1 is required for constitutive heterochromatin formation and silencing in mammalian somatic cells. J. Biol. Chem. 291, 182–197 (2016).
pubmed: 26468281
doi: 10.1074/jbc.M115.662403
Nishida, Y. et al. The novel BMI-1 inhibitor PTC596 downregulates MCL-1 and induces p53-independent mitochondrial apoptosis in acute myeloid leukemia progenitor cells. Blood Cancer J. 7, e527 (2017).
pubmed: 28211885
pmcid: 5386342
doi: 10.1038/bcj.2017.8
Lessard, J. & Sauvageau, G. Bmi-1 determines the proliferative capacity of normal and leukaemic stem cells. Nature 423, 255–260 (2003).
pubmed: 12714970
doi: 10.1038/nature01572
Yuan, J. et al. Bmi1 is essential for leukemic reprogramming of myeloid progenitor cells. Leukemia 25, 1335–1343 (2011).
pubmed: 21527932
doi: 10.1038/leu.2011.85
Park, I.-K. et al. Bmi-1 is required for maintenance of adult self-renewing haematopoietic stem cells. Nature 423, 302–305 (2003).
pubmed: 12714971
doi: 10.1038/nature01587
Rizo, A., Dontje, B., Vellenga, E., de Haan, G. & Schuringa, J. J. Long-term maintenance of human hematopoietic stem/progenitor cells by expression of BMI1. Blood 111, 2621–2630 (2008).
pubmed: 18156489
doi: 10.1182/blood-2007-08-106666
Liang, W. et al. Knockdown BMI1 expression inhibits proliferation and invasion in human bladder cancer T24 cells. Mol. Cell Biochem. 382, 283–291 (2013).
pubmed: 23820733
pmcid: 3771375
doi: 10.1007/s11010-013-1745-0
Kreso, A. et al. Self-renewal as a therapeutic target in human colorectal cancer. Nat. Med. 20, 29–36 (2014).
pubmed: 24292392
doi: 10.1038/nm.3418
Dimri, M., Kang, M. & Dimri, G. P. A miR-200c/141–BMI1 autoregulatory loop regulates oncogenic activity of BMI1 in cancer cells. Oncotarget 7, 36220–36234 (2016).
pubmed: 27105531
pmcid: 5094995
doi: 10.18632/oncotarget.8811
Mourgues, L. et al. The BMI1 Polycomb protein represses cyclin G2-induced autophagy to support proliferation in chronic myeloid leukemia cells. Leukemia 29, 1993–2002 (2015).
pubmed: 25925206
doi: 10.1038/leu.2015.112
Bansal, N. et al. BMI-1 targeting interferes with patient-derived tumor-initiating cell survival and tumor growth in prostate cancer. Clin. Cancer Res. 22, 6176–6191 (2016).
pubmed: 27307599
pmcid: 5159329
doi: 10.1158/1078-0432.CCR-15-3107
Nishida, Y. et al. Preclinical activity of the novel B-cell-specific Moloney murine leukemia virus integration site 1 inhibitor PTC-209 in acute myeloid leukemia: implications for leukemia therapy. Cancer Sci. 106, 1705–1713 (2015).
pubmed: 26450753
pmcid: 4714665
doi: 10.1111/cas.12833
Kim, M. J. et al. Abstract 5517: PTC596-induced Bmi1 hyper-phosphorylation via Cdk1/2 activation resulting in tumor stem cell depletion. Cancer Res. 74, 5517 (2014).
Infante, J. R. et al. Phase 1 results of PTC596, a novel small molecule targeting cancer stem cells (CSCs) by reducing levels of BMI1 protein. J. Clin. Oncol. 35, 2574 (2017).
doi: 10.1200/JCO.2017.35.15_suppl.2574
Yu, B. D., Hess, J. L., Horning, S. E., Brown, G. A. J. & Korsmeyer, S. J. Altered Hox expression and segmental identity in Mll-mutant mice. Nature 378, 505–508 (1995).
pubmed: 7477409
doi: 10.1038/378505a0
Armstrong, S. A. et al. MLL translocations specify a distinct gene expression profile that distinguishes a unique leukemia. Nat. Genet. 30, 41–47 (2002).
pubmed: 11731795
doi: 10.1038/ng765
Yeoh, E.-J. et al. Classification, subtype discovery, and prediction of outcome in pediatric acute lymphoblastic leukemia by gene expression profiling. Cancer Cell 1, 133–143 (2002).
pubmed: 12086872
doi: 10.1016/S1535-6108(02)00032-6
Faber, J. et al. HOXA9 is required for survival in human MLL-rearranged acute leukemias. Blood 113, 2375–2385 (2009).
pubmed: 19056693
pmcid: 2656267
doi: 10.1182/blood-2007-09-113597
Meyer, C. et al. The MLL recombinome of acute leukemias in 2013. Leukemia 27, 2165–2176 (2013).
pubmed: 23628958
pmcid: 3826032
doi: 10.1038/leu.2013.135
Meyer, C. et al. The MLL recombinome of acute leukemias in 2017. Leukemia 32, 273–284 (2018).
pubmed: 28701730
doi: 10.1038/leu.2017.213
Yokoyama, A., Lin, M., Naresh, A., Kitabayashi, I. & Cleary, M. L. A higher-order complex containing AF4 and ENL family proteins with P-TEFb facilitates oncogenic and physiologic MLL-dependent transcription. Cancer Cell 17, 198–212 (2010).
pubmed: 20153263
pmcid: 2824033
doi: 10.1016/j.ccr.2009.12.040
Meeks, J. J. & Shilatifard, A. Multiple roles for the MLL/COMPASS family in the epigenetic regulation of gene expression and in cancer. Annu. Rev. Cancer Biol. 1, 425–446 (2017).
doi: 10.1146/annurev-cancerbio-050216-034333
Krivtsov, A. V. & Armstrong, S. A. MLL translocations, histone modifications and leukaemia stem-cell development. Nat. Rev. Cancer 7, 823–833 (2007).
pubmed: 17957188
doi: 10.1038/nrc2253
Thiel, A. T. et al. MLL–AF9-induced leukemogenesis requires coexpression of the wild-type Mll allele. Cancer Cell 17, 148–159 (2010).
pubmed: 20159607
pmcid: 2830208
doi: 10.1016/j.ccr.2009.12.034
Ayton, P. M., Chen, E. H. & Cleary, M. L. Binding to nonmethylated CpG DNA is essential for target recognition, transactivation, and myeloid transformation by an MLL oncoprotein. Mol. Cell Biol. 24, 10470–10478 (2004).
pubmed: 15542854
pmcid: 529055
doi: 10.1128/MCB.24.23.10470-10478.2004
Erb, M. A. et al. Transcription control by the ENL YEATS domain in acute leukaemia. Nat. Genet. 543, 270–274 (2017).
Stein, E. M. et al. The DOT1L inhibitor pinometostat reduces H3K79 methylation and has modest clinical activity in adult acute leukemia. Blood 131, 2661–2669 (2018).
pubmed: 29724899
doi: 10.1182/blood-2017-12-818948
pmcid: 6265654
Cohen, K. J., Jabado, N. & Grill, J. Diffuse intrinsic pontine gliomas—current management and new biologic insights. Is there a glimmer of hope? Neuro-Oncology 19 , 1025–1034 (2017).
Schwartzentruber, J. et al. Driver mutations in histone H3.3 and chromatin remodelling genes in paediatric glioblastoma. Nature 482, 226–231 (2012).
pubmed: 22286061
doi: 10.1038/nature10833
Sturm, D. et al. Hotspot mutations in H3F3A and IDH1 define distinct epigenetic and biological subgroups of glioblastoma. Cancer Cell 22, 425–437 (2012).
pubmed: 23079654
doi: 10.1016/j.ccr.2012.08.024
Venneti, S. et al. Evaluation of histone 3 lysine 27 trimethylation (H3K27me3) and enhancer of Zest 2 (EZH2) in pediatric glial and glioneuronal tumors shows decreased H3K27me3 in H3F3A K27M mutant glioblastomas. Brain Pathol. 23, 558–564 (2013).
pubmed: 23414300
doi: 10.1111/bpa.12042
pmcid: 3701028
Chan, K. M. et al. The histone H3.3K27M mutation in pediatric glioma reprograms H3K27 methylation and gene expression. Genes Dev. 27, 985–990 (2013).
pubmed: 23603901
pmcid: 3656328
doi: 10.1101/gad.217778.113
Pengelly, A. R., Copur, Ö., Jäckle, H., Herzig, A. & Müller, J. A histone mutant reproduces the phenotype caused by loss of histone-modifying factor Polycomb. Science 339, 698–699 (2013).
Herz, H.-M. et al. Histone H3 lysine-to-methionine mutants as a paradigm to study chromatin signaling. Science 345, 1065–1070 (2014).
pubmed: 25170156
pmcid: 4508193
doi: 10.1126/science.1255104
Lewis, P. W. et al. Inhibition of PRC2 activity by a gain-of-function H3 mutation found in pediatric glioblastoma. Science 340, 857–861 (2013).
pubmed: 23539183
pmcid: 3951439
doi: 10.1126/science.1232245
Piunti, A. et al. Therapeutic targeting of Polycomb and BET bromodomain proteins in diffuse intrinsic pontine gliomas. Nat. Genet. 23, 493–500 (2017).
doi: 10.1038/nm.4296
Behjati, S. et al. Distinct H3F3A and H3F3B driver mutations define chondroblastoma and giant cell tumor of bone. Nat. Genet. 45, 1479–1482 (2013).
pubmed: 24162739
doi: 10.1038/ng.2814
Lu, C. et al. Histone H3K36 mutations promote sarcomagenesis through altered histone methylation landscape. Science 352, 844–849 (2016).
pubmed: 27174990
pmcid: 4928577
doi: 10.1126/science.aac7272
Fang, D. et al. The histone H3.3K36M mutation reprograms the epigenome of chondroblastomas. Science 352, 1344–1348 (2016).
pubmed: 27229140
pmcid: 5460624
doi: 10.1126/science.aae0065
Lohr, J. G. et al. Discovery and prioritization of somatic mutations in diffuse large B-cell lymphoma (DLBCL) by whole-exome sequencing. Proc. Natl Acad. Sci. USA 109, 3879–3884 (2012).
pubmed: 22343534
doi: 10.1073/pnas.1121343109
pmcid: 3309757
Morin, R. D. et al. Mutational and structural analysis of diffuse large B-cell lymphoma using whole genome sequencing. Blood 122, 1256–1265 (2013).
pubmed: 23699601
pmcid: 3744992
doi: 10.1182/blood-2013-02-483727
Morin, R. D. et al. Frequent mutation of histone-modifying genes in non-Hodgkin lymphoma. Nature 476, 298–303 (2011).
pubmed: 21796119
pmcid: 3210554
doi: 10.1038/nature10351
Li, H. et al. Mutations in linker histone genes HIST1H1 B, C, D and E, OCT2 (POU2F2), IRF8 and ARID1A underlying the pathogenesis of follicular lymphoma. Blood 123, 1487–1498 (2014).
pubmed: 24435047
pmcid: 4729540
doi: 10.1182/blood-2013-05-500264
Poynter, S. T. & Kadoch, C. Polycomb and trithorax opposition in development and disease. Wiley Interdiscip. Rev. Dev. Biol. 5, 659–688 (2016).
pubmed: 27581385
pmcid: 5518792
doi: 10.1002/wdev.244
Peterson, C. L. & Herskowitz, I. Characterization of the yeast SWI1, SWI2, and SWI3 genes, which encode a global activator of transcription. Cell 68, 573–583 (1992).
pubmed: 1339306
doi: 10.1016/0092-8674(92)90192-F
Tamkun, J. W. et al. brahma: A regulator of Drosophila homeotic genes structurally related to the yeast transcriptional activator SNF2SWI2. Cell 68, 561–572 (1992).
pubmed: 1346755
doi: 10.1016/0092-8674(92)90191-E
Kwon, H., Imbalzano, A. N., Khavari, P. A., Kingston, R. E. & Green, M. R. Nucleosome disruption and enhancement of activator binding by a human SW1/SNF complex. Nature 370, 477–481 (1994).
pubmed: 8047169
doi: 10.1038/370477a0
Mashtalir, N. et al. Modular organization and assembly of SWI/SNF family chromatin remodeling complexes. Cell 175, 1272–1288 (2018).
pubmed: 30343899
doi: 10.1016/j.cell.2018.09.032
pmcid: 6791824
Michel, B. C. et al. A non-canonical SWI/SNF complex is a synthetic lethal target in cancers driven by BAF complex perturbation. Nat. Cell Biol. 20, 1410–1420 (2018).
Kadoch, C. & Crabtree, G. R. Mammalian SWI/SNF chromatin remodeling complexes and cancer: mechanistic insights gained from human genomics. Sci. Adv. 1, e1500447 (2015).
pubmed: 26601204
pmcid: 4640607
doi: 10.1126/sciadv.1500447
Kadoch, C. et al. Proteomic and bioinformatic analysis of mammalian SWI/SNF complexes identifies extensive roles in human malignancy. Nat. Genet. 45, 592–601 (2013).
pubmed: 23644491
pmcid: 3667980
doi: 10.1038/ng.2628
Bailey, M. H. et al. Comprehensive characterization of cancer driver genes and mutations. Cell 173, 371–385.e18 (2018).
pubmed: 29625053
doi: 10.1016/j.cell.2018.02.060
pmcid: 6029450
Wilson, B. G. et al. Epigenetic antagonism between Polycomb and SWI/SNF complexes during oncogenic transformation. Cancer Cell 18, 316–328 (2010).
pubmed: 20951942
pmcid: 2957473
doi: 10.1016/j.ccr.2010.09.006
Chun, H.-J. E. et al. Genome-wide profiles of extra-cranial malignant rhabdoid tumors reveal heterogeneity and dysregulated developmental pathways. Cancer Cell 29, 394–406 (2016).
pubmed: 26977886
pmcid: 5094835
doi: 10.1016/j.ccell.2016.02.009
Versteege, I. et al. Truncating mutations of hSNF5/INI1 in aggressive paediatric cancer. Nature 394, 203–206 (1998).
pubmed: 9671307
doi: 10.1038/28212
Wang, X. et al. SMARCB1-mediated SWI/SNF complex function is essential for enhancer regulation. Nat. Genet. 49, 289–295 (2017).
pubmed: 27941797
doi: 10.1038/ng.3746
Nakayama, R. T. et al. SMARCB1 is required for widespread BAF complex-mediated activation of enhancers and bivalent promoters. Nat. Genet. 49, 1613–1623 (2017).
pubmed: 28945250
pmcid: 5803080
doi: 10.1038/ng.3958
Pan, J. et al. Interrogation of mammalian protein complex structure, function, and membership using genome-scale fitness screens. Cell Syst. 6, 555–568.e7 (2018).
pubmed: 29778836
pmcid: 6152908
doi: 10.1016/j.cels.2018.04.011
Kadoch, C. & Crabtree, G. R. Reversible disruption of mSWI/SNF (BAF) complexes by the SS18–SSX oncogenic fusion in synovial sarcoma. Cell 153, 71–85 (2013).
pubmed: 23540691
pmcid: 3655887
doi: 10.1016/j.cell.2013.02.036
McBride, M. J. et al. The SS18–SSX fusion oncoprotein hijacks BAF complex targeting and function to drive synovial sarcoma. Cancer Cell 33, 1128–1141.e7 (2018).
pubmed: 29861296
doi: 10.1016/j.ccell.2018.05.002
pmcid: 6791822
Kawano, S. et al. Preclinical evidence of anti-tumor activity induced by EZH2 inhibition in human models of synovial sarcoma. PLoS ONE 11, e0158888 (2016).
pubmed: 27391784
pmcid: 4938529
doi: 10.1371/journal.pone.0158888
Su, L. et al. Deconstruction of the SS18–SSX fusion oncoprotein complex: insights into disease etiology and therapeutics. Cancer Cell 21, 333–347 (2012).
pubmed: 22439931
pmcid: 3734954
doi: 10.1016/j.ccr.2012.01.010
Schoffski, P. et al. Phase 2 multicenter study of the EZH2 inhibitor tazemetostat in adults with synovial sarcoma (NCT02601950). J. Clin. Oncol. 35, 11057 (2017).
doi: 10.1200/JCO.2017.35.15_suppl.11057
Chi, S. N. et al. A phase I study of the EZH2 inhibitor tazemetostat in pediatric subjects with relapsed or refractory INI1-negative tumors or synovial sarcoma. J. Clin. Oncol. 34, TPS10587 (2017).
doi: 10.1200/JCO.2016.34.15_suppl.TPS10587
Gounder, M. M. et al. Phase 2 multicenter study of the EZH2 inhibitor tazemetostat in adults with INI1 negative epithelioid sarcoma (NCT02601950). J. Clin. Oncol. 35, 11058 (2017).
doi: 10.1200/JCO.2017.35.15_suppl.11058
Remillard, D. et al. Degradation of the BAF complex factor BRD9 by heterobifunctional ligands. Angew. Chem. Int. Ed. 56, 5738–5743 (2017).
doi: 10.1002/anie.201611281
Brien, G. L. et al. Targeted degradation of BRD9 reverses oncogenic gene expression in synovial sarcoma. eLife 15, e41305 (2018).