Chromatin regulatory mechanisms and therapeutic opportunities in cancer.


Journal

Nature cell biology
ISSN: 1476-4679
Titre abrégé: Nat Cell Biol
Pays: England
ID NLM: 100890575

Informations de publication

Date de publication:
02 2019
Historique:
received: 16 07 2018
accepted: 30 11 2018
pubmed: 4 1 2019
medline: 16 4 2019
entrez: 4 1 2019
Statut: ppublish

Résumé

Research over the past several decades has unmasked a major contribution of disrupted chromatin regulatory processes to human disease, particularly cancer. Advances in genome-wide technologies have highlighted frequent mutations in genes encoding chromatin-associated proteins, identified unexpected synthetic lethal opportunities and enabled increasingly comprehensive structural and functional dissection. Here, we review recent progress in our understanding of oncogenic mechanisms at each level of chromatin organization and regulation, and discuss new strategies towards therapeutic intervention.

Identifiants

pubmed: 30602726
doi: 10.1038/s41556-018-0258-1
pii: 10.1038/s41556-018-0258-1
pmc: PMC6755910
mid: NIHMS1046838
doi:

Substances chimiques

Chromatin 0
Histones 0

Types de publication

Journal Article Research Support, Non-U.S. Gov't Review

Langues

eng

Sous-ensembles de citation

IM

Pagination

152-161

Subventions

Organisme : NCI NIH HHS
ID : DP2 CA195762
Pays : United States
Organisme : NCI NIH HHS
ID : R01 CA237241
Pays : United States
Organisme : NIGMS NIH HHS
ID : T32 GM095450
Pays : United States

Références

Annunziato, A. DNA packaging: nucleosomes and chromatin. Nat. Educ. 1, 26 (2008).
Schübeler, D. Function and information content of DNA methylation. Nature 517, 321–326 (2015).
pubmed: 25592537 doi: 10.1038/nature14192
Tessarz, P. & Kouzarides, T. Histone core modifications regulating nucleosome structure and dynamics. Nat. Rev. Mol. Cell Biol. 15, 703–708 (2014).
pubmed: 25315270 doi: 10.1038/nrm3890
Clapier, C. R. & Cairns, B. R. The biology of chromatin remodeling complexes. Annu. Rev. Biochem. 78, 273–304 (2009).
pubmed: 19355820 doi: 10.1146/annurev.biochem.77.062706.153223
Beck, S. et al. A blueprint for an International Cancer Epigenome Consortium. A report from the AACR Cancer Epigenome Task Force. Cancer Res. 72, 6319–6324 (2012).
pubmed: 23188507 doi: 10.1158/0008-5472.CAN-12-3658
The Cancer Genome Atlas Research Network. et al. The Cancer Genome Atlas pan-cancer analysis project. Nature Genet. 45, 1113–1120 (2013).
doi: 10.1038/ng.2764
Polak, P. et al. Cell-of-origin chromatin organization shapes the mutational landscape of cancer. Nature 518, 360–364 (2015).
pubmed: 25693567 pmcid: 4405175 doi: 10.1038/nature14221
Venkatesh, S. & Workman, J. L. Histone exchange, chromatin structure and the regulation of transcription. Nat. Rev. Mol. Cell Biol. 16, 178–189 (2015).
pubmed: 25650798 doi: 10.1038/nrm3941
Fyodorov, D. V., Zhou, B.-R., Skoultchi, A. I. & Bai, Y. Emerging roles of linker histones in regulating chromatin structure and function. Nat. Rev. Mol. Cell Biol. 19, 192–206 (2018).
pubmed: 29018282 doi: 10.1038/nrm.2017.94
Hergeth, S. P. & Schneider, R. The H1 linker histones: multifunctional proteins beyond the nucleosomal core particle. EMBO Rep. 16, 1439–1453 (2015).
pubmed: 26474902 pmcid: 4641498 doi: 10.15252/embr.201540749
Kohli, R. M. & Zhang, Y. TET enzymes, TDG and the dynamics of DNA demethylation. Nature 502, 472–479 (2013).
pubmed: 24153300 pmcid: 4046508 doi: 10.1038/nature12750
Audia, J. E. & Campbell, R. M. Histone modifications and cancer. Cold Spring Harb. Perspect. Biol. 8, a019521 (2016).
pubmed: 27037415 pmcid: 4817802 doi: 10.1101/cshperspect.a019521
Kadoch, C. et al. Dynamics of BAF–Polycomb complex opposition on heterochromatin in normal and oncogenic states. Nat. Genet. 49, 213–222 (2017).
pubmed: 27941796 doi: 10.1038/ng.3734
Stanton, B. Z. et al. Smarca4 ATPase mutations disrupt direct eviction of PRC1 from chromatin. Nat. Genet. 49, 282–288 (2017).
pubmed: 27941795 doi: 10.1038/ng.3735
Riising, E. M. et al. Gene silencing triggers Polycomb repressive complex 2 recruitment to CpG islands genome wide. Mol. Cell 55, 347–360 (2014).
pubmed: 24999238 doi: 10.1016/j.molcel.2014.06.005
Jones, P. A. Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat. Rev. Genet. 13, 484–492 (2012).
doi: 10.1038/nrg3230 pubmed: 22641018
Collings, C. K. & Anderson, J. N. Links between DNA methylation and nucleosome occupancy in the human genome. Epigenet. Chromatin 10, 18 (2017).
Kulis, M. & Esteller, M. DNA methylation and cancer. Adv. Genet. 70, 27–56 (2010).
pubmed: 20920744 doi: 10.1016/B978-0-12-380866-0.60002-2
Lyko, F. The DNA methyltransferase family: a versatile toolkit for epigenetic regulation. Nat. Rev. Genet. 19, 81–92 (2018).
pubmed: 29033456 doi: 10.1038/nrg.2017.80
Okano, M., Bell, D. W., Haber, D. A. & Li, E. DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 99, 247–257 (1999).
pubmed: 10555141 doi: 10.1016/S0092-8674(00)81656-6
Okano, M., Xie, S. & Li, E. Cloning and characterization of a family of novel mammalian DNA (cytosine-5) methyltransferases. Nat. Genet. 19, 219–220 (1998).
pubmed: 9662389 doi: 10.1038/890
Sen, G. L., Reuter, J. A., Webster, D. E., Zhu, L. & Khavari, P. A. DNMT1 maintains progenitor function in self-renewing somatic tissue. Nature 463, 563–567 (2010).
pubmed: 20081831 pmcid: 3050546 doi: 10.1038/nature08683
Yap, D. B. et al. Somatic mutations at EZH2 Y641 act dominantly through a mechanism of selectively altered PRC2 catalytic activity, to increase H3K27 trimethylation. Blood 117, 2451–2459 (2011).
pubmed: 21190999 pmcid: 3062411 doi: 10.1182/blood-2010-11-321208
Lee, P. P. et al. A critical role for Dnmt1 and DNA methylation in T cell development, function, and survival. Immunity 15, 763–774 (2001).
pubmed: 11728338 doi: 10.1016/S1074-7613(01)00227-8
Peters, S. L. et al. An essential role for Dnmt1 in the prevention and maintenance of MYC-induced T-cell lymphomas. Mol. Cell Biol. 33, 4321–4233 (2013).
pubmed: 24001767 pmcid: 3811897 doi: 10.1128/MCB.00776-13
Laird, P. W. et al. Suppression of intestinal neoplasia by DNA hypomethylation. Cell 81, 197–205 (1995).
pubmed: 7537636 doi: 10.1016/0092-8674(95)90329-1
Bröske, A.-M. et al. DNA methylation protects hematopoietic stem cell multipotency from myeloerythroid restriction. Nat. Genet. 41, 1207–1215 (2009).
pubmed: 19801979 doi: 10.1038/ng.463
Kim, M. S., Kim, Y. R., Yoo, N. J. & Lee, S. H. Mutational analysis of DNMT3A gene in acute leukemias and common solid cancers. APMIS 121, 85–94 (2012).
pubmed: 23031157 doi: 10.1111/j.1600-0463.2012.02940.x
Kandoth, C. et al. Mutational landscape and significance across 12 major cancer types. Nature 502, 333–339 (2013).
pubmed: 24132290 pmcid: 3927368 doi: 10.1038/nature12634
Forbes, S. A. et al. COSMIC: mining complete cancer genomes in the Catalogue of Somatic Mutations in Cancer. Nucleic Acids Res. 39, D945–D950 (2011).
pubmed: 20952405 doi: 10.1093/nar/gkq929
Yang, L., Rau, R. & Goodell, M. A. DNMT3A in haematological malignancies. Nat. Rev. Cancer 15, 152–165 (2015).
pubmed: 25693834 pmcid: 5814392 doi: 10.1038/nrc3895
The Cancer Genome Atlas Research Network. Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. N. Engl. J. Med. 368, 2059–2074 (2013).
pmcid: 3767041 doi: 10.1056/NEJMoa1301689
Cerami, E. et al. The cBio Cancer Genomics Portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2, 401–404 (2012).
pubmed: 22588877 doi: 10.1158/2159-8290.CD-12-0095
Gao, J. et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci. Signal. 6, pl1 (2013).
pubmed: 23550210 pmcid: 4160307 doi: 10.1126/scisignal.2004088
Liao, J. et al. Targeted disruption of DNMT1, DNMT3A and DNMT3B in human embryonic stem cells. Nat. Genet. 47, 469–478 (2015).
pubmed: 25822089 pmcid: 4414868 doi: 10.1038/ng.3258
Baubec, T. et al. Genomic profiling of DNA methyltransferases reveals a role for DNMT3B in genic methylation. Nature 520, 243–247 (2015).
pubmed: 25607372 doi: 10.1038/nature14176
Zhang, Z.-M. et al. Structural basis for DNMT3A-mediated de novo DNA methylation. Nature 554, 387–391 (2018).
pubmed: 29414941 pmcid: 5814352 doi: 10.1038/nature25477
Ishiyama, S. et al. Structure of the Dnmt1 reader module complexed with a unique two-mono-ubiquitin mark on histone H3 reveals the basis for DNA methylation maintenance. Mol. Cell 68, 350–360.e7 (2017).
pubmed: 29053958 doi: 10.1016/j.molcel.2017.09.037
Shapiro, R. M. & Lazo-Langner, A. Systematic review of azacitidine regimens in myelodysplastic syndrome and acute myeloid leukemia. BMC Hematol. 18, 3 (2018).
pubmed: 29435331 pmcid: 5793426 doi: 10.1186/s12878-017-0094-8
Dombret, H. et al. International phase 3 study of azacitidine vs conventional care regimens in older patients with newly diagnosed AML with>30% blasts. Blood 126, 291–299 (2015).
pubmed: 25987659 pmcid: 4504945 doi: 10.1182/blood-2015-01-621664
Rasmussen, K. D. & Helin, K. Role of TET enzymes in DNA methylation, development, and cancer. Genes Dev. 30, 733–750 (2016).
pubmed: 27036965 pmcid: 4826392 doi: 10.1101/gad.276568.115
Wu, H. & Zhang, Y. Reversing DNA methylation: mechanisms, genomics, and biological functions. Cell 156, 45–68 (2014).
pubmed: 24439369 pmcid: 3938284 doi: 10.1016/j.cell.2013.12.019
Hu, L. et al. Crystal structure of TET2–DNA complex: insight into TET-mediated 5mC oxidation. Cell 155, 1545–1555 (2013).
pubmed: 24315485 doi: 10.1016/j.cell.2013.11.020
Xu, Y. et al. Genome-wide regulation of 5hmC, 5mC, and gene expression by Tet1 hydroxylase in mouse embryonic stem cells. Mol. Cell 42, 451–464 (2011).
pubmed: 21514197 pmcid: 3099128 doi: 10.1016/j.molcel.2011.04.005
Jin, S.-G. et al. Tet3 reads 5-carboxylcytosine through its CXXC domain and is a potential guardian against neurodegeneration. Cell Rep. 14, 493–505 (2016).
pubmed: 26774490 pmcid: 4731272 doi: 10.1016/j.celrep.2015.12.044
Jiang, X. et al. Targeted inhibition of STAT/TET1 axis as a therapeutic strategy for acute myeloid leukemia. Nat. Commun. 8, 2099 (2017).
pubmed: 29235481 pmcid: 5727390 doi: 10.1038/s41467-017-02290-w
Jenuwein, T. & Allis, C. D. Translating the histone code. Science 293, 1074–1080 (2001).
pubmed: 11498575 doi: 10.1126/science.1063127
Schreiber, S. L. & Bernstein, B. E. Signaling network model of chromatin. Cell 111, 771–778 (2002).
pubmed: 12526804 doi: 10.1016/S0092-8674(02)01196-0
Zhao, Y. & Garcia, B. A. Comprehensive catalog of currently documented histone modifications. Cold Spring Harb. Perspect. Biol. 7, a025064 (2015).
pubmed: 26330523 pmcid: 4563710 doi: 10.1101/cshperspect.a025064
Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl Acad. Sci. USA 102, 15545–15550 (2005).
pubmed: 16199517 doi: 10.1073/pnas.0506580102 pmcid: 1239896
Liberzon, A. et al. Molecular signatures database (MSigDB) 3.0. Bioinformatics 27, 1739–1740 (2011).
pubmed: 21546393 pmcid: 3106198 doi: 10.1093/bioinformatics/btr260
Khare, S. P. et al. HIstome—a relational knowledgebase of human histone proteins and histone modifying enzymes. Nucleic Acids Res. 40, D337–D342 (2011).
pubmed: 22140112 pmcid: 3245077 doi: 10.1093/nar/gkr1125
Dawson, M. A. & Kouzarides, T. Cancer epigenetics: from mechanism to therapy. Cell 150, 12–27 (2012).
pubmed: 22770212 doi: 10.1016/j.cell.2012.06.013
Bannister, A. J. & Kouzarides, T. Regulation of chromatin by histone modifications. Cell Res. 21, 381–395 (2011).
pubmed: 21321607 pmcid: 3193420 doi: 10.1038/cr.2011.22
Bennett, R. L. & Licht, J. D. Targeting epigenetics in cancer. Annu. Rev. Pharmacol. Toxicol. 58, 187–207 (2018).
pubmed: 28992434 doi: 10.1146/annurev-pharmtox-010716-105106
Seto, E. & Yoshida, M. Erasers of histone acetylation: the histone deacetylase enzymes. Cold Spring Harb. Perspect. Biol. 6, a018713 (2014).
pubmed: 24691964 pmcid: 3970420 doi: 10.1101/cshperspect.a018713
West, A. C. & Johnstone, R. W. New and emerging HDAC inhibitors for cancer treatment. J. Clin. Invest. 124, 30–39 (2014).
pubmed: 24382387 pmcid: 3871231 doi: 10.1172/JCI69738
Licht, J. D. AML1 and the AML1–ETO fusion protein in the pathogenesis of t(8;21) AML. Oncogene 20, 5660–5679 (2001).
pubmed: 11607817 doi: 10.1038/sj.onc.1204593
Liu, Y. et al. The tetramer structure of the Nervy homology two domain, NHR2, is critical for AML1/ETO’s activity. Cancer Cell 9, 249–260 (2006).
pubmed: 16616331 doi: 10.1016/j.ccr.2006.03.012
Di Croce, L. et al. Methyltransferase recruitment and DNA hypermethylation of target promoters by an oncogenic transcription factor. Science 295, 1079–1082 (2002).
pubmed: 11834837 doi: 10.1126/science.1065173
Suraweera, A., O’Byrne, K. J. & Richard, D. J. Combination therapy with histone deacetylase inhibitors (HDACi) for the treatment of cancer: achieving the full therapeutic potential of HDACi. Front. Oncol. 8, 92 (2018).
pubmed: 29651407 pmcid: 5884928 doi: 10.3389/fonc.2018.00092
Li, Y. & Seto, E. HDACs and HDAC inhibitors in cancer development and therapy. Cold Spring Harb. Perspect. Med. 6, a026831 (2016).
pubmed: 27599530 pmcid: 5046688 doi: 10.1101/cshperspect.a026831
Laugesen, A., Højfeldt, J. W. & Helin, K. Role of the Polycomb repressive complex 2 (PRC2) in transcriptional regulation and cancer. Cold Spring Harb. Perspect. Med. 6, a026575 (2016).
pubmed: 27449971 pmcid: 5008062 doi: 10.1101/cshperspect.a026575
Chittock, E. C., Latwiel, S., Miller, T. C. R. & Müller, C. W. Molecular architecture of Polycomb repressive complexes. Biochem. Soc. Trans. 45, 193–205 (2017).
pubmed: 28202673 pmcid: 5310723 doi: 10.1042/BST20160173
Margueron, R. & Reinberg, D. The Polycomb complex PRC2 and its mark in life. Nature 469, 343–349 (2011).
pubmed: 21248841 pmcid: 3760771 doi: 10.1038/nature09784
Comet, I., Riising, E. M., Leblanc, B. & Helin, K. Maintaining cell identity: PRC2-mediated regulation of transcription and cancer. Nat. Rev. Cancer 16, 803–810 (2016).
pubmed: 27658528 doi: 10.1038/nrc.2016.83
Vo, B. T. et al. Inactivation of Ezh2 upregulates Gfi1 and drives aggressive Myc-driven group 3 medulloblastoma. Cell Rep. 18, 2907–2917 (2017).
pubmed: 28329683 pmcid: 5415387 doi: 10.1016/j.celrep.2017.02.073
Bracken, A. P., Dietrich, N., Pasini, D., Hansen, K. H. & Helin, K. Genome-wide mapping of Polycomb target genes unravels their roles in cell fate transitions. Genes Dev. 20, 1123–1136 (2006).
pubmed: 16618801 pmcid: 1472472 doi: 10.1101/gad.381706
Gao, S.-B. et al. EZH2 represses target genes through H3K27-dependent and H3K27-independent mechanisms in hepatocellular carcinoma. Mol. Cancer Res. 12, 1388–1397 (2014).
pubmed: 24916103 doi: 10.1158/1541-7786.MCR-14-0034
Puda, A. et al. Frequent deletions of JARID2 in leukemic transformation of chronic myeloid malignancies. Am. J. Hematol. 87, 245–250 (2011).
pubmed: 22190018 doi: 10.1002/ajh.22257
Ntziachristos, P. et al. Genetic inactivation of the Polycomb repressive complex 2 in T cell acute lymphoblastic leukemia. Nat. Med. 18, 298–302 (2012).
pubmed: 22237151 pmcid: 3274628 doi: 10.1038/nm.2651
Score, J. et al. Inactivation of Polycomb repressive complex 2 components in myeloproliferative and myelodysplastic/myeloproliferative neoplasms. Blood 119, 1208–1213 (2012).
pubmed: 22053108 doi: 10.1182/blood-2011-07-367243
Lee, W. et al. PRC2 is recurrently inactivated through EED or SUZ12 loss in malignant peripheral nerve sheath tumors. Nat. Genet. 46, 1227–1232 (2014).
pubmed: 25240281 pmcid: 4249650 doi: 10.1038/ng.3095
Bachmann, I. M. et al. EZH2 expression is associated with high proliferation rate and aggressive tumor subgroups in cutaneous melanoma and cancers of the endometrium, prostate, and breast. J. Clin. Oncol. 24, 268–273 (2006).
pubmed: 16330673 doi: 10.1200/JCO.2005.01.5180
Bödör, C. et al. EZH2 mutations are frequent and represent an early event in follicular lymphoma. Blood 122, 3165–3168 (2013).
pubmed: 24052547 pmcid: 3814734 doi: 10.1182/blood-2013-04-496893
Morin, R. D. et al. Somatic mutations altering EZH2 (Tyr641) in follicular and diffuse large B-cell lymphomas of germinal-center origin. Nat. Genet. 42, 181–185 (2010).
pubmed: 20081860 pmcid: 2850970 doi: 10.1038/ng.518
Yap, D. B. et al. Somatic mutations at EZH2 Y641 act dominantly through a mechanism of selectively altered PRC2 catalytic activity, to increase H3K27 trimethylation. Blood 117, 2451–2459 (2010).
pubmed: 21190999 doi: 10.1182/blood-2010-11-321208
Justin, N. et al. Structural basis of oncogenic histone H3K27M inhibition of human Polycomb repressive complex 2. Nat. Commun. 7, 11316 (2016).
pubmed: 27121947 pmcid: 4853476 doi: 10.1038/ncomms11316
Margueron, R. et al. Role of the Polycomb protein EED in the propagation of repressive histone marks. Nature 461, 762–767 (2009).
pubmed: 19767730 pmcid: 3772642 doi: 10.1038/nature08398
Sanulli, S. et al. Jarid2 methylation via the PRC2 complex regulates H3K27me3 deposition during cell differentiation. Mol. Cell 57, 769–783 (2015).
pubmed: 25620564 pmcid: 4352895 doi: 10.1016/j.molcel.2014.12.020
Lee, C.-H. et al. Allosteric activation dictates PRC2 activity independent of its recruitment to chromatin. Mol. Cell 70, 422–434 (2018).
pubmed: 29681499 doi: 10.1016/j.molcel.2018.03.020 pmcid: 5935545
Brooun, A. et al. Polycomb repressive complex 2 structure with inhibitor reveals a mechanism of activation and drug resistance. Nat. Commun. 7, 11384 (2016).
pubmed: 27122193 pmcid: 4853478 doi: 10.1038/ncomms11384
Jiao, L. & Liu, X. Structural basis of histone H3K27 trimethylation by an active Polycomb repressive complex 2. Science 350, aac4383 (2015).
pubmed: 26472914 pmcid: 5220110 doi: 10.1126/science.aac4383
Arora, S. et al. EZH2 inhibitors are broadly efficacious in multiple myeloma as single agent and in combination with standard of care therapeutics. Blood 128, 5672 (2016).
doi: 10.1182/blood.V128.22.5672.5672
Italiano, A. et al. Tazemetostat, an EZH2 inhibitor, in relapsed or refractory B-cell non-Hodgkin lymphoma and advanced solid tumours: a first-in-human, open-label, phase 1 study. Lancet Oncol. 19, 649–659 (2018).
pubmed: 29650362 doi: 10.1016/S1470-2045(18)30145-1
Gao, Z. et al. PCGF homologs, CBX proteins, and RYBP define functionally distinct PRC1 family complexes. Mol. Cell 45, 344–356 (2012).
pubmed: 22325352 pmcid: 3293217 doi: 10.1016/j.molcel.2012.01.002
Bernstein, E. et al. Mouse Polycomb proteins bind differentially to methylated histone H3 and RNA and are enriched in facultative heterochromatin. Mol. Cell Biol. 26, 2560–2569 (2006).
pubmed: 16537902 pmcid: 1430336 doi: 10.1128/MCB.26.7.2560-2569.2006
Morey, L. et al. Nonoverlapping functions of the Polycomb group Cbx family of proteins in embryonic stem cells. Cell Stem Cell 10, 47–62 (2012).
pubmed: 22226355 doi: 10.1016/j.stem.2011.12.006
McGinty, R. K., Henrici, R. C. & Tan, S. Crystal structure of the PRC1 ubiquitylation module bound to the nucleosome. Nature 514, 591–596 (2014).
pubmed: 25355358 pmcid: 4215650 doi: 10.1038/nature13890
Gray, F. et al. BMI1 regulates PRC1 architecture and activity through homo- and hetero-oligomerization. Nat. Commun. 7, 13343 (2016).
pubmed: 27827373 pmcid: 5105191 doi: 10.1038/ncomms13343
Abdouh, M., Hanna, R., El Hajjar, J., Flamier, A. & Bernier, G. The Polycomb repressive complex 1 protein BMI1 is required for constitutive heterochromatin formation and silencing in mammalian somatic cells. J. Biol. Chem. 291, 182–197 (2016).
pubmed: 26468281 doi: 10.1074/jbc.M115.662403
Nishida, Y. et al. The novel BMI-1 inhibitor PTC596 downregulates MCL-1 and induces p53-independent mitochondrial apoptosis in acute myeloid leukemia progenitor cells. Blood Cancer J. 7, e527 (2017).
pubmed: 28211885 pmcid: 5386342 doi: 10.1038/bcj.2017.8
Lessard, J. & Sauvageau, G. Bmi-1 determines the proliferative capacity of normal and leukaemic stem cells. Nature 423, 255–260 (2003).
pubmed: 12714970 doi: 10.1038/nature01572
Yuan, J. et al. Bmi1 is essential for leukemic reprogramming of myeloid progenitor cells. Leukemia 25, 1335–1343 (2011).
pubmed: 21527932 doi: 10.1038/leu.2011.85
Park, I.-K. et al. Bmi-1 is required for maintenance of adult self-renewing haematopoietic stem cells. Nature 423, 302–305 (2003).
pubmed: 12714971 doi: 10.1038/nature01587
Rizo, A., Dontje, B., Vellenga, E., de Haan, G. & Schuringa, J. J. Long-term maintenance of human hematopoietic stem/progenitor cells by expression of BMI1. Blood 111, 2621–2630 (2008).
pubmed: 18156489 doi: 10.1182/blood-2007-08-106666
Liang, W. et al. Knockdown BMI1 expression inhibits proliferation and invasion in human bladder cancer T24 cells. Mol. Cell Biochem. 382, 283–291 (2013).
pubmed: 23820733 pmcid: 3771375 doi: 10.1007/s11010-013-1745-0
Kreso, A. et al. Self-renewal as a therapeutic target in human colorectal cancer. Nat. Med. 20, 29–36 (2014).
pubmed: 24292392 doi: 10.1038/nm.3418
Dimri, M., Kang, M. & Dimri, G. P. A miR-200c/141–BMI1 autoregulatory loop regulates oncogenic activity of BMI1 in cancer cells. Oncotarget 7, 36220–36234 (2016).
pubmed: 27105531 pmcid: 5094995 doi: 10.18632/oncotarget.8811
Mourgues, L. et al. The BMI1 Polycomb protein represses cyclin G2-induced autophagy to support proliferation in chronic myeloid leukemia cells. Leukemia 29, 1993–2002 (2015).
pubmed: 25925206 doi: 10.1038/leu.2015.112
Bansal, N. et al. BMI-1 targeting interferes with patient-derived tumor-initiating cell survival and tumor growth in prostate cancer. Clin. Cancer Res. 22, 6176–6191 (2016).
pubmed: 27307599 pmcid: 5159329 doi: 10.1158/1078-0432.CCR-15-3107
Nishida, Y. et al. Preclinical activity of the novel B-cell-specific Moloney murine leukemia virus integration site 1 inhibitor PTC-209 in acute myeloid leukemia: implications for leukemia therapy. Cancer Sci. 106, 1705–1713 (2015).
pubmed: 26450753 pmcid: 4714665 doi: 10.1111/cas.12833
Kim, M. J. et al. Abstract 5517: PTC596-induced Bmi1 hyper-phosphorylation via Cdk1/2 activation resulting in tumor stem cell depletion. Cancer Res. 74, 5517 (2014).
Infante, J. R. et al. Phase 1 results of PTC596, a novel small molecule targeting cancer stem cells (CSCs) by reducing levels of BMI1 protein. J. Clin. Oncol. 35, 2574 (2017).
doi: 10.1200/JCO.2017.35.15_suppl.2574
Yu, B. D., Hess, J. L., Horning, S. E., Brown, G. A. J. & Korsmeyer, S. J. Altered Hox expression and segmental identity in Mll-mutant mice. Nature 378, 505–508 (1995).
pubmed: 7477409 doi: 10.1038/378505a0
Armstrong, S. A. et al. MLL translocations specify a distinct gene expression profile that distinguishes a unique leukemia. Nat. Genet. 30, 41–47 (2002).
pubmed: 11731795 doi: 10.1038/ng765
Yeoh, E.-J. et al. Classification, subtype discovery, and prediction of outcome in pediatric acute lymphoblastic leukemia by gene expression profiling. Cancer Cell 1, 133–143 (2002).
pubmed: 12086872 doi: 10.1016/S1535-6108(02)00032-6
Faber, J. et al. HOXA9 is required for survival in human MLL-rearranged acute leukemias. Blood 113, 2375–2385 (2009).
pubmed: 19056693 pmcid: 2656267 doi: 10.1182/blood-2007-09-113597
Meyer, C. et al. The MLL recombinome of acute leukemias in 2013. Leukemia 27, 2165–2176 (2013).
pubmed: 23628958 pmcid: 3826032 doi: 10.1038/leu.2013.135
Meyer, C. et al. The MLL recombinome of acute leukemias in 2017. Leukemia 32, 273–284 (2018).
pubmed: 28701730 doi: 10.1038/leu.2017.213
Yokoyama, A., Lin, M., Naresh, A., Kitabayashi, I. & Cleary, M. L. A higher-order complex containing AF4 and ENL family proteins with P-TEFb facilitates oncogenic and physiologic MLL-dependent transcription. Cancer Cell 17, 198–212 (2010).
pubmed: 20153263 pmcid: 2824033 doi: 10.1016/j.ccr.2009.12.040
Meeks, J. J. & Shilatifard, A. Multiple roles for the MLL/COMPASS family in the epigenetic regulation of gene expression and in cancer. Annu. Rev. Cancer Biol. 1, 425–446 (2017).
doi: 10.1146/annurev-cancerbio-050216-034333
Krivtsov, A. V. & Armstrong, S. A. MLL translocations, histone modifications and leukaemia stem-cell development. Nat. Rev. Cancer 7, 823–833 (2007).
pubmed: 17957188 doi: 10.1038/nrc2253
Thiel, A. T. et al. MLL–AF9-induced leukemogenesis requires coexpression of the wild-type Mll allele. Cancer Cell 17, 148–159 (2010).
pubmed: 20159607 pmcid: 2830208 doi: 10.1016/j.ccr.2009.12.034
Ayton, P. M., Chen, E. H. & Cleary, M. L. Binding to nonmethylated CpG DNA is essential for target recognition, transactivation, and myeloid transformation by an MLL oncoprotein. Mol. Cell Biol. 24, 10470–10478 (2004).
pubmed: 15542854 pmcid: 529055 doi: 10.1128/MCB.24.23.10470-10478.2004
Erb, M. A. et al. Transcription control by the ENL YEATS domain in acute leukaemia. Nat. Genet. 543, 270–274 (2017).
Stein, E. M. et al. The DOT1L inhibitor pinometostat reduces H3K79 methylation and has modest clinical activity in adult acute leukemia. Blood 131, 2661–2669 (2018).
pubmed: 29724899 doi: 10.1182/blood-2017-12-818948 pmcid: 6265654
Cohen, K. J., Jabado, N. & Grill, J. Diffuse intrinsic pontine gliomas—current management and new biologic insights. Is there a glimmer of hope? Neuro-Oncology 19 , 1025–1034 (2017).
Schwartzentruber, J. et al. Driver mutations in histone H3.3 and chromatin remodelling genes in paediatric glioblastoma. Nature 482, 226–231 (2012).
pubmed: 22286061 doi: 10.1038/nature10833
Sturm, D. et al. Hotspot mutations in H3F3A and IDH1 define distinct epigenetic and biological subgroups of glioblastoma. Cancer Cell 22, 425–437 (2012).
pubmed: 23079654 doi: 10.1016/j.ccr.2012.08.024
Venneti, S. et al. Evaluation of histone 3 lysine 27 trimethylation (H3K27me3) and enhancer of Zest 2 (EZH2) in pediatric glial and glioneuronal tumors shows decreased H3K27me3 in H3F3A K27M mutant glioblastomas. Brain Pathol. 23, 558–564 (2013).
pubmed: 23414300 doi: 10.1111/bpa.12042 pmcid: 3701028
Chan, K. M. et al. The histone H3.3K27M mutation in pediatric glioma reprograms H3K27 methylation and gene expression. Genes Dev. 27, 985–990 (2013).
pubmed: 23603901 pmcid: 3656328 doi: 10.1101/gad.217778.113
Pengelly, A. R., Copur, Ö., Jäckle, H., Herzig, A. & Müller, J. A histone mutant reproduces the phenotype caused by loss of histone-modifying factor Polycomb. Science 339, 698–699 (2013).
Herz, H.-M. et al. Histone H3 lysine-to-methionine mutants as a paradigm to study chromatin signaling. Science 345, 1065–1070 (2014).
pubmed: 25170156 pmcid: 4508193 doi: 10.1126/science.1255104
Lewis, P. W. et al. Inhibition of PRC2 activity by a gain-of-function H3 mutation found in pediatric glioblastoma. Science 340, 857–861 (2013).
pubmed: 23539183 pmcid: 3951439 doi: 10.1126/science.1232245
Piunti, A. et al. Therapeutic targeting of Polycomb and BET bromodomain proteins in diffuse intrinsic pontine gliomas. Nat. Genet. 23, 493–500 (2017).
doi: 10.1038/nm.4296
Behjati, S. et al. Distinct H3F3A and H3F3B driver mutations define chondroblastoma and giant cell tumor of bone. Nat. Genet. 45, 1479–1482 (2013).
pubmed: 24162739 doi: 10.1038/ng.2814
Lu, C. et al. Histone H3K36 mutations promote sarcomagenesis through altered histone methylation landscape. Science 352, 844–849 (2016).
pubmed: 27174990 pmcid: 4928577 doi: 10.1126/science.aac7272
Fang, D. et al. The histone H3.3K36M mutation reprograms the epigenome of chondroblastomas. Science 352, 1344–1348 (2016).
pubmed: 27229140 pmcid: 5460624 doi: 10.1126/science.aae0065
Lohr, J. G. et al. Discovery and prioritization of somatic mutations in diffuse large B-cell lymphoma (DLBCL) by whole-exome sequencing. Proc. Natl Acad. Sci. USA 109, 3879–3884 (2012).
pubmed: 22343534 doi: 10.1073/pnas.1121343109 pmcid: 3309757
Morin, R. D. et al. Mutational and structural analysis of diffuse large B-cell lymphoma using whole genome sequencing. Blood 122, 1256–1265 (2013).
pubmed: 23699601 pmcid: 3744992 doi: 10.1182/blood-2013-02-483727
Morin, R. D. et al. Frequent mutation of histone-modifying genes in non-Hodgkin lymphoma. Nature 476, 298–303 (2011).
pubmed: 21796119 pmcid: 3210554 doi: 10.1038/nature10351
Li, H. et al. Mutations in linker histone genes HIST1H1 B, C, D and E, OCT2 (POU2F2), IRF8 and ARID1A underlying the pathogenesis of follicular lymphoma. Blood 123, 1487–1498 (2014).
pubmed: 24435047 pmcid: 4729540 doi: 10.1182/blood-2013-05-500264
Poynter, S. T. & Kadoch, C. Polycomb and trithorax opposition in development and disease. Wiley Interdiscip. Rev. Dev. Biol. 5, 659–688 (2016).
pubmed: 27581385 pmcid: 5518792 doi: 10.1002/wdev.244
Peterson, C. L. & Herskowitz, I. Characterization of the yeast SWI1, SWI2, and SWI3 genes, which encode a global activator of transcription. Cell 68, 573–583 (1992).
pubmed: 1339306 doi: 10.1016/0092-8674(92)90192-F
Tamkun, J. W. et al. brahma: A regulator of Drosophila homeotic genes structurally related to the yeast transcriptional activator SNF2SWI2. Cell 68, 561–572 (1992).
pubmed: 1346755 doi: 10.1016/0092-8674(92)90191-E
Kwon, H., Imbalzano, A. N., Khavari, P. A., Kingston, R. E. & Green, M. R. Nucleosome disruption and enhancement of activator binding by a human SW1/SNF complex. Nature 370, 477–481 (1994).
pubmed: 8047169 doi: 10.1038/370477a0
Mashtalir, N. et al. Modular organization and assembly of SWI/SNF family chromatin remodeling complexes. Cell 175, 1272–1288 (2018).
pubmed: 30343899 doi: 10.1016/j.cell.2018.09.032 pmcid: 6791824
Michel, B. C. et al. A non-canonical SWI/SNF complex is a synthetic lethal target in cancers driven by BAF complex perturbation. Nat. Cell Biol. 20, 1410–1420 (2018).
Kadoch, C. & Crabtree, G. R. Mammalian SWI/SNF chromatin remodeling complexes and cancer: mechanistic insights gained from human genomics. Sci. Adv. 1, e1500447 (2015).
pubmed: 26601204 pmcid: 4640607 doi: 10.1126/sciadv.1500447
Kadoch, C. et al. Proteomic and bioinformatic analysis of mammalian SWI/SNF complexes identifies extensive roles in human malignancy. Nat. Genet. 45, 592–601 (2013).
pubmed: 23644491 pmcid: 3667980 doi: 10.1038/ng.2628
Bailey, M. H. et al. Comprehensive characterization of cancer driver genes and mutations. Cell 173, 371–385.e18 (2018).
pubmed: 29625053 doi: 10.1016/j.cell.2018.02.060 pmcid: 6029450
Wilson, B. G. et al. Epigenetic antagonism between Polycomb and SWI/SNF complexes during oncogenic transformation. Cancer Cell 18, 316–328 (2010).
pubmed: 20951942 pmcid: 2957473 doi: 10.1016/j.ccr.2010.09.006
Chun, H.-J. E. et al. Genome-wide profiles of extra-cranial malignant rhabdoid tumors reveal heterogeneity and dysregulated developmental pathways. Cancer Cell 29, 394–406 (2016).
pubmed: 26977886 pmcid: 5094835 doi: 10.1016/j.ccell.2016.02.009
Versteege, I. et al. Truncating mutations of hSNF5/INI1 in aggressive paediatric cancer. Nature 394, 203–206 (1998).
pubmed: 9671307 doi: 10.1038/28212
Wang, X. et al. SMARCB1-mediated SWI/SNF complex function is essential for enhancer regulation. Nat. Genet. 49, 289–295 (2017).
pubmed: 27941797 doi: 10.1038/ng.3746
Nakayama, R. T. et al. SMARCB1 is required for widespread BAF complex-mediated activation of enhancers and bivalent promoters. Nat. Genet. 49, 1613–1623 (2017).
pubmed: 28945250 pmcid: 5803080 doi: 10.1038/ng.3958
Pan, J. et al. Interrogation of mammalian protein complex structure, function, and membership using genome-scale fitness screens. Cell Syst. 6, 555–568.e7 (2018).
pubmed: 29778836 pmcid: 6152908 doi: 10.1016/j.cels.2018.04.011
Kadoch, C. & Crabtree, G. R. Reversible disruption of mSWI/SNF (BAF) complexes by the SS18–SSX oncogenic fusion in synovial sarcoma. Cell 153, 71–85 (2013).
pubmed: 23540691 pmcid: 3655887 doi: 10.1016/j.cell.2013.02.036
McBride, M. J. et al. The SS18–SSX fusion oncoprotein hijacks BAF complex targeting and function to drive synovial sarcoma. Cancer Cell 33, 1128–1141.e7 (2018).
pubmed: 29861296 doi: 10.1016/j.ccell.2018.05.002 pmcid: 6791822
Kawano, S. et al. Preclinical evidence of anti-tumor activity induced by EZH2 inhibition in human models of synovial sarcoma. PLoS ONE 11, e0158888 (2016).
pubmed: 27391784 pmcid: 4938529 doi: 10.1371/journal.pone.0158888
Su, L. et al. Deconstruction of the SS18–SSX fusion oncoprotein complex: insights into disease etiology and therapeutics. Cancer Cell 21, 333–347 (2012).
pubmed: 22439931 pmcid: 3734954 doi: 10.1016/j.ccr.2012.01.010
Schoffski, P. et al. Phase 2 multicenter study of the EZH2 inhibitor tazemetostat in adults with synovial sarcoma (NCT02601950). J. Clin. Oncol. 35, 11057 (2017).
doi: 10.1200/JCO.2017.35.15_suppl.11057
Chi, S. N. et al. A phase I study of the EZH2 inhibitor tazemetostat in pediatric subjects with relapsed or refractory INI1-negative tumors or synovial sarcoma. J. Clin. Oncol. 34, TPS10587 (2017).
doi: 10.1200/JCO.2016.34.15_suppl.TPS10587
Gounder, M. M. et al. Phase 2 multicenter study of the EZH2 inhibitor tazemetostat in adults with INI1 negative epithelioid sarcoma (NCT02601950). J. Clin. Oncol. 35, 11058 (2017).
doi: 10.1200/JCO.2017.35.15_suppl.11058
Remillard, D. et al. Degradation of the BAF complex factor BRD9 by heterobifunctional ligands. Angew. Chem. Int. Ed. 56, 5738–5743 (2017).
doi: 10.1002/anie.201611281
Brien, G. L. et al. Targeted degradation of BRD9 reverses oncogenic gene expression in synovial sarcoma. eLife 15, e41305 (2018).

Auteurs

Alfredo M Valencia (AM)

Department of Pediatric Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA.
Broad Institute of MIT and Harvard, Cambridge, MA, USA.
Chemical Biology Program, Harvard University, Cambridge, MA, USA.

Cigall Kadoch (C)

Department of Pediatric Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA. Cigall_kadoch@dfci.harvard.edu.
Broad Institute of MIT and Harvard, Cambridge, MA, USA. Cigall_kadoch@dfci.harvard.edu.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH