A critical appraisal of amyloid-β-targeting therapies for Alzheimer disease.


Journal

Nature reviews. Neurology
ISSN: 1759-4766
Titre abrégé: Nat Rev Neurol
Pays: England
ID NLM: 101500072

Informations de publication

Date de publication:
02 2019
Historique:
pubmed: 6 1 2019
medline: 30 1 2020
entrez: 6 1 2019
Statut: ppublish

Résumé

Brain accumulation of the amyloid-β (Aβ) peptide is believed to be the initial event in the Alzheimer disease (AD) process. Aβ accumulation begins 15-20 years before clinical symptoms occur, mainly owing to defective brain clearance of the peptide. Over the past 20 years, we have seen intensive efforts to decrease the levels of Aβ monomers, oligomers, aggregates and plaques using compounds that decrease production, antagonize aggregation or increase brain clearance of Aβ. Unfortunately, these approaches have failed to show clinical benefit in large clinical trials involving patients with mild to moderate AD. Clinical trials in patients at earlier stages of the disease are ongoing, but the initial results have not been clinically impressive. Efforts are now being directed against Aβ oligomers, the most neurotoxic molecular species, and monoclonal antibodies directed against these oligomers are producing encouraging results. However, Aβ oligomers are in equilibrium with both monomeric and aggregated species; thus, previous drugs that efficiently removed monomeric Aβ or Aβ plaques should have produced clinical benefits. In patients with sporadic AD, Aβ accumulation could be a reactive compensatory response to neuronal damage of unknown cause, and alternative strategies, including interference with modifiable risk factors, might be needed to defeat this devastating disease.

Identifiants

pubmed: 30610216
doi: 10.1038/s41582-018-0116-6
pii: 10.1038/s41582-018-0116-6
doi:

Substances chimiques

Amyloid beta-Peptides 0
Antibodies, Monoclonal, Humanized 0
aducanumab 105J35OE21
Amyloid Precursor Protein Secretases EC 3.4.-
Aspartic Acid Endopeptidases EC 3.4.23.-
BACE1 protein, human EC 3.4.23.46

Types de publication

Journal Article Review

Langues

eng

Sous-ensembles de citation

IM

Pagination

73-88

Références

Murphy, S. L., Xu, J., Kochanek, K. D., Curtin, S. C. & Arias, E. Deaths: final data for 2015. Natl Vital Stat. Rep. 66, 1–75 (2017).
pubmed: 29235985
Alzheimer’s Association. 2017 Alzheimer’s disease facts and figures. Alzheimers Dement. 13, 325–373 (2017).
doi: 10.1016/j.jalz.2017.02.001
Beyreuther, K. & Masters, C. L. Amyloid precursor protein (APP) and βA4 amyloid in the etiology of Alzheimer’s disease: precursor–product relationships in the derangement of neuronal function. Brain Pathol. 1, 241–251 (1991).
pubmed: 1669714 doi: 10.1111/j.1750-3639.1991.tb00667.x
Hardy, J. & Allsop, D. Amyloid deposition as the central event in the aetiology of Alzheimer’s disease. Trends Pharmacol. Sci. 12, 383–388 (1991).
pubmed: 1763432 doi: 10.1016/0165-6147(91)90609-V
Selkoe, D. J. The molecular pathology of Alzheimer’s disease. Neuron 6, 487–498 (1991).
pubmed: 1673054 doi: 10.1016/0896-6273(91)90052-2
Hardy, J. A. & Higgins, G. A. Alzheimer’s disease: the amyloid cascade hypothesis. Science 256, 184–185 (1992).
pubmed: 1566067 doi: 10.1126/science.1566067
Karran, E., Mercken, M. & De Strooper, B. The amyloid cascade hypothesis for Alzheimer’s disease: an appraisal for the development of therapeutics. Nat. Rev. Drug Discov. 10, 698–712 (2011).
pubmed: 21852788 doi: 10.1038/nrd3505
Jonsson, T. et al. A mutation in APP protects against Alzheimer’s disease and age-related cognitive decline. Nature 488, 96–99 (2012).
pubmed: 22801501 doi: 10.1038/nature11283
Mawuenyega, K. G. et al. Decreased clearance of CNS β-amyloid in Alzheimer’s disease. Science 330, 1774 (2010).
pubmed: 21148344 pmcid: 3073454 doi: 10.1126/science.1197623
Yang, L. B. et al. Elevated β-secretase expression and enzymatic activity detected in sporadic Alzheimer disease. Nat. Med. 9, 3–4 (2003).
pubmed: 12514700 doi: 10.1038/nm0103-3
Liu, C. C., Kanekiyo, T., Xu, H. & Bu, G. Apolipoprotein E and Alzheimer disease: risk, mechanisms and therapy. Nat. Rev. Neurol. 9, 106–118 (2013).
pubmed: 23296339 pmcid: 3726719 doi: 10.1038/nrneurol.2012.263
Lim, Y. Y. & Mormino, E. C. APOE genotype and early β-amyloid accumulation in older adults without dementia. Neurology 89, 1028–1034 (2017).
pubmed: 28794245 pmcid: 5589795 doi: 10.1212/WNL.0000000000004336
Jack, C. R. Jr et al. Tracking pathophysiological processes in Alzheimer’s disease: an updated hypothetical model of dynamic biomarkers. Lancet Neurol. 12, 207–216 (2013).
pubmed: 23332364 pmcid: 3622225 doi: 10.1016/S1474-4422(12)70291-0
Bennett, D. A. et al. Neuropathology of older persons without cognitive impairment from two community-based studies. Neurology 66, 1837–1844 (2006).
pubmed: 16801647 doi: 10.1212/01.wnl.0000219668.47116.e6
Jansen, W. J. et al. Prevalence of cerebral amyloid pathology in persons without dementia: a meta-analysis. JAMA 313, 1924–1938 (2015).
pubmed: 25988462 pmcid: 4486209 doi: 10.1001/jama.2015.4668
Vos, S. J. et al. Preclinical Alzheimer’s disease and its outcome: a longitudinal cohort study. Lancet Neurol. 12, 957–965 (2013).
pubmed: 24012374 pmcid: 3904678 doi: 10.1016/S1474-4422(13)70194-7
Villemagne, V. L. et al. Amyloid β deposition, neurodegeneration, and cognitive decline in sporadic Alzheimer’s disease: a prospective cohort study. Lancet Neurol. 12, 357–367 (2013).
pubmed: 23477989 doi: 10.1016/S1474-4422(13)70044-9
Burnham, S. C. et al. Clinical and cognitive trajectories in cognitively healthy elderly individuals with suspected non-Alzheimer’s disease pathophysiology (SNAP) or Alzheimer’s disease pathology: a longitudinal study. Lancet Neurol. 15, 1044–1053 (2016).
pubmed: 27450471 doi: 10.1016/S1474-4422(16)30125-9
Petersen, R. C. et al. Association of elevated amyloid levels with cognition and biomarkers in cognitively normal people from the community. JAMA Neurol. 73, 85–92 (2016).
pubmed: 26595683 pmcid: 4710552 doi: 10.1001/jamaneurol.2015.3098
Donohue, M. C. et al. Association between elevated brain amyloid and subsequent cognitive decline among cognitively normal persons. JAMA 317, 2305–2316 (2017).
pubmed: 28609533 pmcid: 5736301 doi: 10.1001/jama.2017.6669
Gomez-Isla, T. et al. Neuronal loss correlates with but exceeds neurofibrillary tangles in Alzheimer’s disease. Ann. Neurol. 41, 17–24 (1997).
pubmed: 9005861 doi: 10.1002/ana.410410106
Arriagada, P. V., Growdon, J. H., Hedley-Whyte, E. T. & Hyman, B. T. Neurofibrillary tangles but not senile plaques parallel duration and severity of Alzheimer’s disease. Neurology 42, 631–639 (1992).
pubmed: 1549228 doi: 10.1212/WNL.42.3.631
Bierer, L. M. et al. Neocortical neurofibrillary tangles correlate with dementia severity in Alzheimer’s disease. Arch. Neurol. 52, 81–88 (1995).
pubmed: 7826280 doi: 10.1001/archneur.1995.00540250089017
Bennett, D. A., Schneider, J. A., Wilson, R. S., Bienias, J. L. & Arnold, S. E. Neurofibrillary tangles mediate the association of amyloid load with clinical Alzheimer disease and level of cognitive function. Arch. Neurol. 61, 378–384 (2004).
pubmed: 15023815 doi: 10.1001/archneur.61.3.378
Buckley, R. F. et al. Region-specific association of subjective cognitive decline with tauopathy independent of global β-amyloid burden. JAMA Neurol. 74, 1455–1463 (2017).
pubmed: 28973551 pmcid: 5774633 doi: 10.1001/jamaneurol.2017.2216
Wang, L. et al. Evaluation of tau imaging in staging Alzheimer disease and revealing interactions between β-amyloid and tauopathy. JAMA Neurol. 73, 1070–1077 (2016).
pubmed: 27454922 pmcid: 5237382 doi: 10.1001/jamaneurol.2016.2078
Sutphen, C. L. et al. Longitudinal decreases in multiple cerebrospinal fluid biomarkers of neuronal injury in symptomatic late onset Alzheimer’s disease. Alzheimers Dement. 14, 869–879 (2018).
pubmed: 29580670 doi: 10.1016/j.jalz.2018.01.012 pmcid: 6110083
McDade, E. et al. Longitudinal cognitive and biomarker changes in dominantly inherited Alzheimer disease. Neurology 91, e1295–e1306 (2018).
pubmed: 30217935 doi: 10.1212/WNL.0000000000006277 pmcid: 6177272
Sato, C. et al. Tau kinetics in neurons and the human central nervous system. Neuron 97, 1284–1298 (2018).
pubmed: 29566794 doi: 10.1016/j.neuron.2018.02.015 pmcid: 6137722
He, Z. et al. Amyloid-β plaques enhance Alzheimer’s brain tau-seeded pathologies by facilitating neuritic plaque tau aggregation. Nat. Med. 24, 29–38 (2018).
pubmed: 29200205 doi: 10.1038/nm.4443
Hansson, O. et al. Association between CSF biomarkers and incipient Alzheimer’s disease in patients with mild cognitive impairment: a follow-up study. Lancet Neurol. 5, 228–234 (2006).
pubmed: 16488378 doi: 10.1016/S1474-4422(06)70355-6
Jack, C. R. Jr et al. Age-specific and sex-specific prevalence of cerebral β-amyloidosis, tauopathy, and neurodegeneration in cognitively unimpaired individuals aged 50–95 years: a cross-sectional study. Lancet Neurol. 16, 435–444 (2017).
pubmed: 28456479 pmcid: 5516534 doi: 10.1016/S1474-4422(17)30077-7
Jones, D. T. et al. Tau, amyloid, and cascading network failure across the Alzheimer’s disease spectrum. Cortex 97, 143–159 (2017).
pubmed: 29102243 pmcid: 5773067 doi: 10.1016/j.cortex.2017.09.018
Holmes, C. et al. Long-term effects of Aβ42 immunisation in Alzheimer’s disease: follow-up of a randomised, placebo-controlled phase I trial. Lancet 372, 216–223 (2008).
pubmed: 18640458 doi: 10.1016/S0140-6736(08)61075-2
Gilman, S. et al. Clinical effects of Aβ immunization (AN1792) in patients with AD in an interrupted trial. Neurology 64, 1553–1562 (2005).
pubmed: 15883316 doi: 10.1212/01.WNL.0000159740.16984.3C
Pasquier, F. et al. Two phase 2 multiple ascending-dose studies of vanutide cridificar (ACC-001) and QS-21 adjuvant in mild-to-moderate Alzheimer’s disease. J. Alzheimers Dis. 51, 1131–1143 (2016).
pubmed: 26967206 doi: 10.3233/JAD-150376
Wiessner, C. et al. The second-generation active Aβ immunotherapy CAD106 reduces amyloid accumulation in APP transgenic mice while minimizing potential side effects. J. Neurosci. 31, 9323–9331 (2011).
pubmed: 21697382 doi: 10.1523/JNEUROSCI.0293-11.2011 pmcid: 6623465
Winblad, B. et al. Safety, tolerability, and antibody response of active Aβ immunotherapy with CAD106 in patients with Alzheimer’s disease: randomised, double-blind, placebo-controlled, first-in-human study. Lancet Neurol. 11, 597–604 (2012).
pubmed: 22677258 doi: 10.1016/S1474-4422(12)70140-0
Farlow, M. R. et al. Long-term treatment with active Aβ immunotherapy with CAD106 in mild Alzheimer’s disease. Alzheimers Res. Ther. 7, 23 (2015).
pubmed: 25918556 pmcid: 4410460 doi: 10.1186/s13195-015-0108-3
Vandenberghe, R. et al. Active Aβ immunotherapy CAD106 in Alzheimer’s disease: a phase 2b study. Alzheimers Dement. 3, 10–22 (2016).
doi: 10.1016/j.trci.2016.12.003
Langbaum, J. B. et al. Establishing composite cognitive endpoints for use in preclinical Alzheimer’s disease trials. J. Prev. Alzheimers Dis. 2, 2–3 (2015).
pubmed: 26273569 pmcid: 4532285
Bouter, Y. et al. Aβ targets of the biosimilar antibodies of bapineuzumab, crenezumab, solanezumab in comparison to an antibody against N-truncated Aβ in sporadic Alzheimer disease cases and mouse models. Acta Neuropathol. 130, 713–729 (2015).
pubmed: 26467270 doi: 10.1007/s00401-015-1489-x
Dodart, J. C. et al. Immunization reverses memory deficits without reducing brain Aβ burden in Alzheimer’s disease model. Nat. Neurosci. 5, 452–457 (2002).
pubmed: 11941374 doi: 10.1038/nn842
DeMattos, R. B. et al. Peripheral anti-Aβ antibody alters CNS and plasma Aβ clearance and decreases brain Aβ burden in a mouse model of Alzheimer’s disease. Proc. Natl Acad. Sci. USA 98, 8850–8855 (2001).
pubmed: 11438712 doi: 10.1073/pnas.151261398 pmcid: 37524
Mably, A. J. et al. Anti-Aβ antibodies incapable of reducing cerebral Aβ oligomers fail to attenuate spatial reference memory deficits in J20 mice. Neurobiol. Dis. 82, 372–384 (2015).
pubmed: 26215784 pmcid: 4641028 doi: 10.1016/j.nbd.2015.07.008
Siemers, E. R. et al. Safety and changes in plasma and cerebrospinal fluid amyloid-β after a single administration of an amyloid-β monoclonal antibody in subjects with Alzheimer disease. Clin. Neuropharmacol. 33, 67–73 (2010).
pubmed: 20375655 doi: 10.1097/WNF.0b013e3181cb577a
Uenaka, K. et al. Comparison of pharmacokinetics, pharmacodynamics, safety, and tolerability of the amyloid β monoclonal antibody solanezumab in Japanese and white patients with mild to moderate alzheimer disease. Clin. Neuropharmacol. 35, 25–29 (2012).
pubmed: 22134132 doi: 10.1097/WNF.0b013e31823a13d3
Farlow, M. et al. Safety and biomarker effects of solanezumab in patients with Alzheimer’s disease. Alzheimers Dement. 8, 261–271 (2012).
pubmed: 22672770 doi: 10.1016/j.jalz.2011.09.224
Doody, R. S. et al. Phase 3 trials of solanezumab for mild-to-moderate Alzheimer’s disease. N. Engl. J. Med. 370, 311–321 (2014).
pubmed: 24450890 doi: 10.1056/NEJMoa1312889
Honig, L. S. et al. Trial of solanezumab for mild dementia due to Alzheimer’s disease. N. Engl. J. Med. 378, 321–330 (2018).
pubmed: 29365294 doi: 10.1056/NEJMoa1705971
Sperling, R. A. et al. The A4 study: stopping AD before symptoms begin? Sci. Transl Med. 6, 228fs13 (2014).
pubmed: 24648338 pmcid: 4049292 doi: 10.1126/scitranslmed.3007941
Donohue, M. C. et al. The preclinical Alzheimer cognitive composite: measuring amyloid-related decline. JAMA Neurol. 71, 961–970 (2014).
pubmed: 24886908 pmcid: 4439182 doi: 10.1001/jamaneurol.2014.803
Bohrmann, B. et al. Gantenerumab: a novel human anti-Aβ antibody demonstrates sustained cerebral amyloid-β binding and elicits cell-mediated removal of human amyloid-β. J. Alzheimers Dis. 28, 49–69 (2012).
pubmed: 21955818 doi: 10.3233/JAD-2011-110977
Jacobsen, H. et al. Combined treatment with a BACE inhibitor and anti-Aβ antibody gantenerumab enhances amyloid reduction in APPLondon mice. J. Neurosci. 34, 11621–11630 (2014).
pubmed: 25164658 pmcid: 4145168 doi: 10.1523/JNEUROSCI.1405-14.2014
Barrow, P. et al. Reproductive and developmental toxicology studies with gantenerumab in PS2APP transgenic mice. Reprod. Toxicol. 73, 362–371 (2017).
pubmed: 28754630 doi: 10.1016/j.reprotox.2017.07.014
Ostrowitzki, S. et al. Mechanism of amyloid removal in patients with Alzheimer disease treated with gantenerumab. Arch. Neurol. 69, 198–207 (2012).
pubmed: 21987394 doi: 10.1001/archneurol.2011.1538
Ostrowitzki, S. et al. A phase III randomized trial of gantenerumab in prodromal Alzheimer’s disease. Alzheimers Res. Ther. 9, 95 (2017).
pubmed: 29221491 pmcid: 5723032 doi: 10.1186/s13195-017-0318-y
Nikolcheva, T. et al. CSF and amyloid pet biomarker data from the phase 3 SCarlet RoAD trial, a study of gantenerumab in patients with prodromal AD. Neurobiol. Aging 39(Suppl.), S28–S29 (2016).
doi: 10.1016/j.neurobiolaging.2016.01.124
Abi-Saab, D. et al. The effect of 6-month dosing on the rate of amyloid-related imaging abnormalities (ARIA) in the Marguerite RoAD study. Alzheimers Dement. 13(Suppl.), P252–P253 (2017).
Abi-Saab, D. et al. MRI findings in the open label extension of the Marguerite RoAD study in patients with mild Alzheimer’s disease [abstract P36]. Presented at the 10th Clinical Trials on Alzheimer’s Disease, Boston, MA, USA (2017).
Adolfsson, O. et al. An effector-reduced anti-β-amyloid (Aβ) antibody with unique Aβ binding properties promotes neuroprotection and glial engulfment of Aβ. J. Neurosci. 32, 9677–9789 (2012).
pubmed: 22787053 doi: 10.1523/JNEUROSCI.4742-11.2012 pmcid: 6622286
Zhao, J., Nussinov, R. & Ma, B. Mechanisms of recognition of amyloid-β (Aβ) monomer, oligomer, and fibril by homologous antibodies. J. Biol. Chem. 292, 18325–18343 (2017).
pubmed: 28924036 pmcid: 5672054 doi: 10.1074/jbc.M117.801514
Ultsch, M. et al. Structure of crenezumab complex with Aβ shows loss of β-hairpin. Sci. Rep. 6, 39374 (2016).
pubmed: 27996029 pmcid: 5171940 doi: 10.1038/srep39374
Fuller, J. P. et al. Comparing the efficacy and neuroinflammatory potential of three anti-Aβ antibodies. Acta Neuropathol. 130, 699–711 (2015).
pubmed: 26433971 pmcid: 4612324 doi: 10.1007/s00401-015-1484-2
Cummings, J. L. et al. ABBY: a phase 2 randomized trial of crenezumab in mild to moderate Alzheimer disease. Neurology 90, e1889–e1897 (2018).
pubmed: 29695589 pmcid: 5962917 doi: 10.1212/WNL.0000000000005550
Salloway, S. et al. Amyloid positron emission tomography and cerebrospinal fluid results from a crenezumab anti-amyloid-beta antibody double-blind, placebo-controlled, randomized phase II study in mild-to-moderate Alzheimer’s disease (BLAZE). Alzheimers Res. Ther. 10, 96 (2018).
pubmed: 30231896 pmcid: 6146627 doi: 10.1186/s13195-018-0424-5
Asnaghi, V. et al. Safety and tolerability of crenezumab in mild-to-moderate AD patients treated with escalating doses for up to 25 months. Alzheimers Dement. 13(Suppl.), 602 (2017).
Blaettler, T. Clinical trial design of CREAD: a randomized, double-blind, placebo-controlled, parallel-group phase-3 study to evaluate crenezumab treatment in patients with prodromal-to-mild Alzheimer’s disease. Alzheimers Dement. 12 (Suppl.), 609 (2016).
Tariot, P. N. et al. The Alzheimer’s Prevention Initiative Autosomal-Dominant Alzheimer’s Disease Trial: a study of crenezumab versus placebo in preclinical PSEN1 E280A mutation carriers to evaluate efficacy and safety in the treatment of autosomal-dominant Alzheimer’s disease, including a placebo-treated noncarrier cohort. Alzheimers Dement. 4, 150–160 (2018).
doi: 10.1016/j.trci.2018.02.002
Arndt, J. W. et al. Structural and kinetic basis for the selectivity of aducanumab for aggregated forms of amyloid-β. Sci. Rep. 8, 6412 (2018).
pubmed: 29686315 pmcid: 5913127 doi: 10.1038/s41598-018-24501-0
Sevigny, J. et al. The antibody aducanumab reduces Aβ plaques in Alzheimer’s disease. Nature 537, 50–56 (2016).
pubmed: 27582220 doi: 10.1038/nature19323
Kastanenka, K. V. et al. Immunotherapy with aducanumab restores calcium homeostasis in Tg2576 mice. J. Neurosci. 36, 12549–12558 (2016).
pubmed: 27810931 pmcid: 5157102 doi: 10.1523/JNEUROSCI.2080-16.2016
Ferrero, J. et al. First-in-human, double-blind, placebo-controlled, single-dose escalation study of aducanumab (BIIB037) in mild-to-moderate Alzheimer’s disease. Alzheimers Dement. 2, 169–176 (2016).
doi: 10.1016/j.trci.2016.06.002
Budd Haeberlein, S. et al. Clinical development of aducanumab, an anti-Aβ human monoclonal antibody being investigated for the treatment of early Alzheimer’s disease. J. Prev. Alzheimers Dis. 4, 255–263 (2017).
pubmed: 29181491
Vassar, R. et al. Function, therapeutic potential and cell biology of BACE proteases: current status and future prospects. J. Neurochem. 130, 4–28 (2014).
pubmed: 24646365 pmcid: 4086641 doi: 10.1111/jnc.12715
Filser, S. et al. Pharmacological inhibition of BACE1 impairs synaptic plasticity and cognitive functions. Biol. Psychiatry 77, 729–739 (2015).
pubmed: 25599931 doi: 10.1016/j.biopsych.2014.10.013
Zhu, K. et al. β-Site amyloid precursor protein cleaving enzyme 1 inhibition impairs synaptic plasticity via seizure protein 6. Biol. Psychiatry 83, 428–437 (2018).
pubmed: 28129943 doi: 10.1016/j.biopsych.2016.12.023
Kennedy, M. E. et al. The BACE1 inhibitor verubecestat (MK-8931) reduces CNS β-amyloid in animal models and in Alzheimer’s disease patients. Sci. Transl Med. 8, 363ra150 (2016).
pubmed: 27807285 doi: 10.1126/scitranslmed.aad9704
Villarreal, S. et al. Chronic verubecestat treatment suppresses amyloid accumulation in advanced aged Tg2576-AβPP
pubmed: 28800329 pmcid: 5611839 doi: 10.3233/JAD-170056
Egan, M. F. et al. Randomized trial of verubecestat for mild-to-moderate Alzheimer’s disease. N. Engl. J. Med. 378, 1691–1703 (2018).
pubmed: 29719179 doi: 10.1056/NEJMoa1706441 pmcid: 6776074
Sur, C. et al. BACE inhibition by verubecestat produces a rapid, non-progressive reduction in brain and hippocampal volume in Alzheimer’s disease [abstract OC13]. Presented at the 11th Clinical Trials on Alzheimer’s Disease, Barcelona, Spain (2018).
Business Wire. Merck announces discontinuation of APECS study evaluating verubecestat (MK-8931) for the treatment of people with prodromal Alzheimer’s disease. Business Wire https://www.businesswire.com/news/home/20180213006582/en/ (2018).
Eketjäll, S. et al. AZD3293: a novel, orally active BACE1 inhibitor with high potency and permeability and markedly slow off-rate kinetics. J. Alzheimers Dis. 50, 1109–1123 (2016).
pubmed: 26890753 pmcid: 4927864 doi: 10.3233/JAD-150834
Cebers, G. et al. Reversible and species-specific depigmentation effects of AZD3293, a BACE inhibitor for the treatment of Alzheimer’s disease, are related to BACE2 inhibition and confined to epidermis and hair. J. Prev. Alzheimers Dis. 3, 202–218 (2016).
pubmed: 29199322
Cebers, G. et al. AZD3293: pharmacokinetic and pharmacodynamic effects in healthy subjects and patients with Alzheimer’s disease. J. Alzheimers Dis. 55, 1039–1053 (2017).
pubmed: 27767991 doi: 10.3233/JAD-160701
Sakamoto, K. et al. BACE1 inhibitor lanabecestat (AZD3293) in a phase 1 study of healthy japanese subjects: pharmacokinetics and effects on plasma and cerebrospinal fluid Aβ peptides. J. Clin. Pharmacol. 57, 1460–1471 (2017).
pubmed: 28618005 doi: 10.1002/jcph.950
Sims, J. R. et al. Development review of the BACE1 inhibitor lanabecestat (AZD3293/LY3314814). J. Prev. Alzheimers Dis. 4, 247–254 (2017).
pubmed: 29181490
Malone, E. Lilly/AstraZeneca’s lanabecestat becomes latest BACE inhibitor casualty. Scrip https://scrip.pharmaintelligence.informa.com/SC123243/LillyAstraZenecas-Lanabecestat-Becomes-Latest-BACE-Inhibitor-Casualty (2018).
Lai, R. et al. First-in-human study of E2609, a novel BACE1 inhibitor, demonstrates prolonged reductions in plasma beta-amyloid levels after single dosing. Alzheimers Dement. 8(Suppl.), 96 (2012).
Albala, B. et al. CSF amyloid lowering in human volunteers after 14 days’ oral administration of the novel BACE1 inhibitor E2609. Alzheimers Dement. 8 (Suppl.), S743 (2012).
Oneeb, M. et al. Dose-related reductions of CSF amyloid β(1-x) by E2609, a novel BACE inhibitor in patients with mild cognitive impairment due to Alzheimer’s disease (AD and mild-moderate AD dementia [abstract P3-28]. Presented at the 9th Clinical Trials on Alzheimer’s Disease, 2016, San Diego, CA, USA (2016).
Wang, J. et al. ADCOMS: a composite clinical outcome for prodromal Alzheimer’s disease trials. J. Neurol. Neurosurg. Psychiatry 87, 993–999 (2016).
pubmed: 27010616 doi: 10.1136/jnnp-2015-312383
Ito, H. et al. Preclinical multi-species pharmacokinetic/pharmacodynamic analysis of the oral BACE inhibitor JNJ-54861911. Alzheimers Dement. 13(Suppl.), P266–P267 (2017).
Timmers, M. et al. Profiling the dynamics of CSF and plasma Aβ reduction after treatment with JNJ-54861911, a potent oral BACE inhibitor. Alzheimers Dement. 2, 202–212 (2016).
doi: 10.1016/j.trci.2016.08.001
Streffer, J. et al. Pharmacodynamics of the oral BACE inhibitor JNJ-54861911 in early Alzheimer’s disease. Alzheimers Dement. 12 (Suppl.), P199–P200 (2016).
Janssen. Update on Janssen’s BACE inhibitor program. Janssen https://www.janssen.com/update-janssens-bace-inhibitor-program (2018).
Neumann, U. et al. The BACE-1 inhibitor CNP520 for prevention trials in Alzheimer’s disease. EMBO Mol. Med. 10, e9316 (2018).
pubmed: 30224383 pmcid: 6220303 doi: 10.15252/emmm.201809316
Ufer, M. et al. Results from a first-in-man study with the BACE inhibitor CNP520. Alzheimers Dement. 12(Suppl.), 200 (2016).
Lopez Lopez, C. et al. Alzheimer’s Prevention Initiative Generation Program: evaluating CNP520 efficacy in the prevention of Alzheimer’s disease. J. Prev. Alzheimers Dis. 4, 242–246 (2017).
pubmed: 29181489
Selkoe, D. J. & Hardy, J. The amyloid hypothesis of Alzheimer’s disease at 25 years. EMBO Mol. Med. 8, 595–608 (2016).
pubmed: 27025652 pmcid: 4888851 doi: 10.15252/emmm.201606210
Giannakopoulos, P. et al. Tangle and neuron numbers, but not amyloid load, predict cognitive status in Alzheimer’s disease. Neurology 60, 1495–1500 (2003).
pubmed: 12743238 doi: 10.1212/01.WNL.0000063311.58879.01
Kuo, Y. M. et al. Water-soluble Aβ (N-40, N-42) oligomers in normal and Alzheimer disease brains. J. Biol. Chem. 271, 4077–4081 (1996).
pubmed: 8626743 doi: 10.1074/jbc.271.8.4077
Funato, H., Enya, M., Yoshimura, M., Morishima-Kawashima, M. & Ihara, Y. Presence of sodium dodecyl sulfate-stable amyloid β-protein dimers in the hippocampus CA1 not exhibiting neurofibrillary tangle formation. Am. J. Pathol. 155, 23–28 (1999).
pubmed: 10393832 pmcid: 1866667 doi: 10.1016/S0002-9440(10)65094-8
Yang, T., Li, S., Xu, H., Walsh, D. M. & Selkoe, D. J. Large soluble oligomers of amyloid β-protein from Alzheimer brain are far less neuroactive than the smaller oligomers to which they dissociate. J. Neurosci. 37, 152–163 (2017).
pubmed: 28053038 pmcid: 5214627 doi: 10.1523/JNEUROSCI.1698-16.2016
Wang, Z. X., Tan, L., Liu, J. & Yu, J. T. The essential role of soluble Aβ oligomers in Alzheimer’s disease. Mol. Neurobiol. 53, 1905–1924 (2016).
pubmed: 25833098 doi: 10.1007/s12035-015-9143-0
Polanco, J. C. et al. Amyloid-β and tau complexity — towards improved biomarkers and targeted therapies. Nat. Rev. Neurol. 14, 22–39 (2018).
pubmed: 29242522 doi: 10.1038/nrneurol.2017.162
Zhao, Y. et al. Amyloid β peptides block new synapse assembly by Nogo receptor-mediated inhibition of T-type calcium channels. Neuron 96, 355–372 (2017).
pubmed: 29024660 pmcid: 6101033 doi: 10.1016/j.neuron.2017.09.041
Lesné, S. E. et al. Brain amyloid-β oligomers in ageing and Alzheimer’s disease. Brain 136, 1383–1398 (2013).
pubmed: 23576130 pmcid: 3634198 doi: 10.1093/brain/awt062
Amar, F. et al. The amyloid-β oligomer Aβ*56 induces specific alterations in neuronal signaling that lead to tau phosphorylation and aggregation. Sci. Signal. 10, eaal2021 (2017).
pubmed: 28487416 pmcid: 5859319 doi: 10.1126/scisignal.aal2021
Busche, M. A. et al. Decreased amyloid-β and increased neuronal hyperactivity by immunotherapy in Alzheimer’s models. Nat. Neurosci. 18, 1725–1727 (2015).
pubmed: 26551546 doi: 10.1038/nn.4163
Abbott, A. & Dolgin, E. Failed Alzheimer’s trial does not kill leading theory of disease. Nature 540, 15–16 (2016).
pubmed: 27905452 doi: 10.1038/nature.2016.21045
Maarouf, C. L. et al. The biochemical aftermath of anti-amyloid immunotherapy. Mol. Neurodegener. 5, 39 (2010).
pubmed: 20929585 pmcid: 2959013 doi: 10.1186/1750-1326-5-39
Hara, H. et al. An oral Aβ vaccine using a recombinant adeno-associated virus vector in aged monkeys: reduction of amyloid plaques and increase of Aβ oligomers. J. Alzheimers Dis. 54, 1047–1059 (2016).
pubmed: 27567868 doi: 10.3233/JAD-160514
Townsend, M. et al. Orally available compound prevents deficits in memory caused by the Alzheimer amyloid-β oligomers. Ann. Neurol. 60, 668–676 (2006).
pubmed: 17192927 doi: 10.1002/ana.21051
Yamada, J. et al. Aβ immunotherapy: intracerebral sequestration of Aβ by an anti Aβ monoclonal antibody 266 with high affinity to soluble Aβ. J. Neurosci. 29, 11393–11398 (2009).
pubmed: 19741145 doi: 10.1523/JNEUROSCI.2021-09.2009 pmcid: 6665926
Watts, R. J. et al. Selection of an anti-Aβ antibody that binds various forms of Aβ and blocks toxicity both in vitro and in vivo. Alzheimers Dement. 5 (Suppl.), 426 (2009).
Relkin, R. N. Natural human antibodies targeting amyloid aggregates in intravenous immunoglobulin. Alzheimers Dement. 4 (Suppl.), T101 (2008).
Du, Y. et al. Human anti-β-amyloid antibodies block β-amyloid fibril formation and prevent β-amyloid-induced neurotoxicity. Brain 26, 1935–1939 (2003).
doi: 10.1093/brain/awg191
Ma, Q. L. et al. Antibodies against β-amyloid reduce Aβ oligomers, glycogen synthase kinase-3β activation and τ phosphorylation in vivo and in vitro. J. Neurosci. Res. 83, 374–384 (2006).
pubmed: 16385556 doi: 10.1002/jnr.20734
Logovinsky, V. et al. Safety and tolerability of BAN2401 — a clinical study in Alzheimer’s disease with a protofibril selective Aβ antibody. Alzheimers Res. Ther. 8, 14 (2016).
pubmed: 27048170 pmcid: 4822297 doi: 10.1186/s13195-016-0181-2
Astrén Eriksson, C. et al. BioArctic announces positive topline results of BAN2401 phase 2b at 18 months in early Alzheimer’s disease. BioArctic https://www.bioarctic.se/en/bioarctic-announces-positive-topline-results-of-ban2401-phase-2b-at-18-months-in-early-alzheimers-disease-3600/ (2018).
Kim, J. et al. Normal cognition in transgenic BRI2-Aβ mice. Mol. Neurodegener. 8, 15 (2013).
pubmed: 23663320 pmcid: 3658944 doi: 10.1186/1750-1326-8-15
Chételat, G. Alzheimer disease: Aβ-independent processes-rethinking preclinical AD. Nat. Rev. Neurol. 9, 123–124 (2013).
pubmed: 23399647 pmcid: 3935395 doi: 10.1038/nrneurol.2013.21
Morris, G. P., Clark, I. A. & Vissel, B. Inconsistencies and controversies surrounding the amyloid hypothesis of Alzheimer’s disease. Acta Neuropathol. Commun. 2, 135 (2014).
pubmed: 25231068 pmcid: 4207354
Musiek, E. S. & Holtzman, D. M. Three dimensions of the amyloid hypothesis: time, space and ‘wingmen’. Nat. Neurosci. 18, 800–806 (2015).
pubmed: 26007213 pmcid: 4445458 doi: 10.1038/nn.4018
Braak, H. & Del Tredici, K. The pathological process underlying Alzheimer’s disease in individuals under thirty. Acta Neuropathol. 121, 171–181 (2011).
pubmed: 21170538 doi: 10.1007/s00401-010-0789-4
Knopman, D. S. et al. Brain injury biomarkers are not dependent on β-amyloid in normal elderly. Ann. Neurol. 73, 472–480 (2013).
pubmed: 23424032 pmcid: 3660408 doi: 10.1002/ana.23816
Knopman, D. S. et al. Short-term clinical outcomes for stages of NIA-AA preclinical Alzheimer disease. Neurology 78, 1576–1582 (2012).
pubmed: 22551733 pmcid: 3348848 doi: 10.1212/WNL.0b013e3182563bbe
Jagust, W. J. & Landau, S. M. Apolipoprotein E, not fibrillar β-amyloid, reduces cerebral glucose metabolism in normal aging. J. Neurosci. 32, 18227–18233 (2012).
pubmed: 23238736 pmcid: 3537830 doi: 10.1523/JNEUROSCI.3266-12.2012
Gordon, B. A. et al. Spatial patterns of neuroimaging biomarker change in individuals from families with autosomal dominant Alzheimer’s disease: a longitudinal study. Lancet Neurol. 17, 241–250 (2018).
pubmed: 29397305 doi: 10.1016/S1474-4422(18)30028-0 pmcid: 5816717
Jack, C. R. Jr et al. Hypothetical model of dynamic biomarkers of the Alzheimer’s pathological cascade. Lancet Neurol. 9, 119–128 (2010).
pubmed: 20083042 pmcid: 2819840 doi: 10.1016/S1474-4422(09)70299-6
Sperling, R. A. et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging–Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 7, 280–292 (2011).
pubmed: 21514248 pmcid: 3220946 doi: 10.1016/j.jalz.2011.03.003
Jansen, W. J. et al. Association of cerebral amyloid-β aggregation with cognitive functioning in persons without dementia. JAMA Psychiatry 75, 84–95 (2018).
pubmed: 29188296 doi: 10.1001/jamapsychiatry.2017.3391
Dubois, B. et al. Cognitive and neuroimaging features and brain β-amyloidosis in individuals at risk of Alzheimer’s disease (INSIGHT-preAD): a longitudinal observational study. Lancet Neurol. 17, 335–346 (2018).
pubmed: 29500152 doi: 10.1016/S1474-4422(18)30029-2
Herrup, K. The case for rejecting the amyloid cascade hypothesis. Nat. Neurosci. 18, 794–799 (2015).
pubmed: 26007212 doi: 10.1038/nn.4017
Bishop, G. M. & Robinson, S. R. Physiological roles of amyloid-β and implications for its removal in Alzheimer’s disease. Drugs Aging 21, 621–630 (2004).
pubmed: 15287821 doi: 10.2165/00002512-200421100-00001
Puzzo, D., Gulisano, W., Arancio, O. & Palmeri, A. The keystone of Alzheimer pathogenesis might be sought in Aβ physiology. Neuroscience 307, 26–36 (2015).
pubmed: 26314631 doi: 10.1016/j.neuroscience.2015.08.039
Yu, Y., Jans, D. C., Winblad, B., Tjernberg, L. O. & Schedin-Weiss, S. Neuronal Aβ42 is enriched in small vesicles at the presynaptic side of synapses. Life Sci. Alliance 1, e201800028 (2018).
pubmed: 30456353 pmcid: 6238618 doi: 10.26508/lsa.201800028
Livingston, G. et al. Dementia prevention, intervention, and care. Lancet 390, 2673–2734 (2017).
pubmed: 28735855 doi: 10.1016/S0140-6736(17)31363-6
Butterfield, D. A., Di Domenico, F. & Barone, E. Elevated risk of type 2 diabetes for development of Alzheimer disease: a key role for oxidative stress in brain. Biochim. Biophys. Acta 1842, 1693–1706 (2014).
pubmed: 24949886 pmcid: 4125611 doi: 10.1016/j.bbadis.2014.06.010
Arnold, S. E. et al. Brain insulin resistance in type 2 diabetes and Alzheimer disease: concepts and conundrums. Nat. Rev. Neurol. 14, 168–181 (2018).
pubmed: 29377010 pmcid: 6098968 doi: 10.1038/nrneurol.2017.185
Mielke, J. G. & Wang, Y. T. Insulin, synaptic function, and opportunities for neuroprotection. Prog. Mol. Biol. Transl Sci. 98, 133–186 (2011).
doi: 10.1016/B978-0-12-385506-0.00004-1
Chiu, S. L., Chen, C. M. & Cline, H. T. Insulin receptor signaling regulates synapse number, dendritic plasticity, and circuit function in vivo. Neuron 58, 708–719 (2008).
pubmed: 18549783 pmcid: 3057650 doi: 10.1016/j.neuron.2008.04.014
Bruehl, H. et al. Cognitive impairment in nondiabetic middle-aged and older adults isassociated with insulin resistance. J. Clin. Exp. Neuropsychol. 32, 487–493 (2010).
pubmed: 20524222 pmcid: 3116728 doi: 10.1080/13803390903224928
De Felice, F. G. & Ferreira, S. T. Inflammation, defective insulin signaling, and mitochondrial dysfunction as common molecular denominators connecting type 2 diabetes to Alzheimer disease. Diabetes 63, 2262–2272 (2014).
pubmed: 24931033 doi: 10.2337/db13-1954
Yarchoan, M. & Arnold, S. E. Repurposing diabetes drugs for brain insulin resistance in Alzheimer disease. Diabetes 63, 2253–2261 (2014).
pubmed: 24931035 pmcid: 4066335 doi: 10.2337/db14-0287
Benedict, C. & Grillo, C. A. Insulin resistance as a therapeutic target in the treatment of Alzheimer’s disease: a state-of-the-art. Front. Neurosci. 12, 215 (2018).
pubmed: 29743868 pmcid: 5932355 doi: 10.3389/fnins.2018.00215
Batista, A. F. et al. The diabetes drug liraglutide reverses cognitive impairment in mice and attenuates insulin receptor and synaptic pathology in a non-human primate model of Alzheimer’s disease. J. Pathol. 245, 85–100 (2018).
pubmed: 29435980 pmcid: 5947670 doi: 10.1002/path.5056
Craft, S. et al. Effects of regular and long-acting insulin on cognition and Alzheimer’s disease biomarkers: a pilot clinical trial. J. Alzheimers Dis. 57, 1325–1334 (2017).
pubmed: 28372335 pmcid: 5409050 doi: 10.3233/JAD-161256
Abbott, A. Is ‘friendly fire’ in the brain provoking Alzheimer’s disease? Nature 556, 426–428 (2018).
pubmed: 29691517 doi: 10.1038/d41586-018-04930-7
Salter, M. W. & Stevens, B. Microglia emerge as central players in brain disease. Nat. Med. 23, 1018–1027 (2017).
pubmed: 28886007 doi: 10.1038/nm.4397
Bu, X. L. et al. A study on the association between infectious burden and Alzheimer’s disease. Eur. J. Neurol. 22, 1519–1525 (2015).
pubmed: 24910016 doi: 10.1111/ene.12477
Fani, L. et al. Helicobacter pylori and the risk of dementia: a population-based study. Alzheimers Dement. 14, 1377–1382 (2018).
pubmed: 29935141 doi: 10.1016/j.jalz.2018.05.005
Marsh, S. E. et al. The adaptive immune system restrains Alzheimer’s disease pathogenesis by modulating microglial function. Proc. Natl Acad. Sci. USA 113, E1316–E1325 (2016).
pubmed: 26884167 doi: 10.1073/pnas.1525466113 pmcid: 4780638
Congdon, E. E. & Sigurdsson, E. M. Tau-targeting therapies for Alzheimer disease. Nat. Rev. Neurol. 14, 399–415 (2018).
pubmed: 29895964 doi: 10.1038/s41582-018-0013-z pmcid: 6463489
Kamenetz, F. et al. APP processing and synaptic function. Neuron 37, 925–937 (2003).
pubmed: 12670422 doi: 10.1016/S0896-6273(03)00124-7
Esteban, J. A. Living with the enemy: a physiological role for the β-amyloid peptide. Trends Neurosci. 27, 1–3 (2004).
pubmed: 14698599 doi: 10.1016/j.tins.2003.10.008
Parihar, M. S. & Brewer, G. J. Amyloid-β as a modulator of synaptic plasticity. J. Alzheimers Dis. 22, 741–763 (2010).
pubmed: 20847424 pmcid: 3079354 doi: 10.3233/JAD-2010-101020
Lawrence, J. L. et al. Regulation of presynaptic Ca
pubmed: 25339735 pmcid: 4205547 doi: 10.1523/JNEUROSCI.0326-14.2014
Palmeri, A. et al. Amyloid-β peptide is needed for cGMP-induced long-term potentiation and memory. J. Neurosci. 37, 6926–6937 (2017).
pubmed: 28626017 pmcid: 5518421 doi: 10.1523/JNEUROSCI.3607-16.2017
Abramov, E. et al. Amyloid-β as a positive endogenous regulator of release probability at hippocampal synapses. Nat. Neurosci. 12, 1567–1576 (2009).
pubmed: 19935655 doi: 10.1038/nn.2433
Morley, J. E. et al. A physiological role for amyloid-β protein: enhancement of learning and memory. J. Alzheimers Dis. 19, 441–449 (2010).
pubmed: 19749407 doi: 10.3233/JAD-2010-1230
Puzzo, D. et al. Endogenous amyloid-β is necessary for hippocampal synaptic plasticity and memory. Ann. Neurol. 69, 819–830 (2011).
pubmed: 21472769 pmcid: 4071456 doi: 10.1002/ana.22313
López-Toledano, M. A. & Shelanski, M. L. Neurogenic effect of β-amyloid peptide in the development of neural stem cells. J. Neurosci. 24, 5439–5444 (2004).
pubmed: 15190117 doi: 10.1523/JNEUROSCI.0974-04.2004 pmcid: 6729298
Plant, L. D., Boyle, J. P., Smith, I. F., Peers, C. & Pearson, H. A. The production of amyloid β peptide is a critical requirement for the viability of central neurons. J. Neurosci. 23, 5531–5535 (2003).
pubmed: 12843253 doi: 10.1523/JNEUROSCI.23-13-05531.2003 pmcid: 6741264
Marklund, N. et al. Monitoring of β-amyloid dynamics after human traumatic brain injury. J. Neurotrauma 31, 42–55 (2014).
pubmed: 23829439 doi: 10.1089/neu.2013.2964
Gatson, J. W. et al. Detection of β-amyloid oligomers as a predictor of neurological outcome after brain injury. J. Neurosurg. 118, 1336–1342 (2013).
pubmed: 23540266 doi: 10.3171/2013.2.JNS121771
Johnson, V., Stewart, W. & Smith, D. H. Traumatic brain injury and amyloid-β pathology: a link to Alzheimer’s disease? Nat. Rev. Neurosci. 11, 361–370 (2010).
pubmed: 20216546 pmcid: 3979339 doi: 10.1038/nrn2808
Abrahamson, E. E. et al. Simvastatin therapy prevents brain trauma-induced increases in β-amyloid peptide levels. Ann. Neurol. 66, 407–414 (2009).
pubmed: 19798641 doi: 10.1002/ana.21731
Stein, T. D. et al. β-Amyloid deposition in chronic traumatic encephalopathy. Acta Neuropathol. 130, 21–34 (2015).
pubmed: 25943889 pmcid: 4529056 doi: 10.1007/s00401-015-1435-y
McKee, A. C., Stein, T. D., Kiernan, P. T. & Alvarez, V. E. The neuropathology of chronic traumatic encephalopathy. Brain Pathol. 25, 350–364 (2015).
pubmed: 25904048 pmcid: 4526170 doi: 10.1111/bpa.12248
Dong, Y. et al. The common inhalational anesthetic sevoflurane induces apoptosis and increases β-amyloid protein levels. Arch. Neurol. 66, 620–631 (2009).
pubmed: 19433662 pmcid: 2748878 doi: 10.1001/archneurol.2009.48
Perucho, J. et al. Anesthesia with isoflurane increases amyloid pathology in mice models of Alzheimer’s disease. J. Alzheimers Dis. 19, 1245–1257 (2010).
pubmed: 20308791 doi: 10.3233/JAD-2010-1318
Fodale, V., Santamaria, L. B., Schifilliti, D. & Mandal, P. K. Anaesthetics and postoperative cognitive dysfunction: a pathological mechanism mimicking Alzheimer’s disease. Anaesthesia 65, 388–395 (2010).
pubmed: 20136805 doi: 10.1111/j.1365-2044.2010.06244.x
Jiang, J. & Jiang, H. Effect of the inhaled anesthetics isoflurane, sevoflurane and desflurane on the neuropathogenesis of Alzheimer’s disease (review). Mol. Med. Rep. 12, 3–12 (2015).
pubmed: 25738734 pmcid: 4438950 doi: 10.3892/mmr.2015.3424
Yu, P., Wang, H., Mu, L., Ding, X. & Ding, W. Effect of general anesthesia on serum β-amyloid protein and regional cerebral oxygen saturation of elderly patients after subtotal gastrectomy. Exp. Ther. Med. 12, 3561–3566 (2016).
pubmed: 28101151 pmcid: 5228211 doi: 10.3892/etm.2016.3814
Mäkinen, S. et al. Coaccumulation of calcium and β-amyloid in the thalamus after transient middle cerebral artery occlusion in rats. J. Cereb. Blood Flow Metab. 28, 263–268 (2008).
pubmed: 17653130 doi: 10.1038/sj.jcbfm.9600529
Li, L. et al. Hypoxia increases Aβ generation by altering β- and γ-cleavage of APP. Neurobiol. Aging 30, 1091–1098 (2009).
pubmed: 18063223 doi: 10.1016/j.neurobiolaging.2007.10.011
Garcia-Alloza, M. et al. Cerebrovascular lesions induce transient β-amyloid deposition. Brain 134, 3697–3707 (2011).
pubmed: 22120142 doi: 10.1093/brain/awr300
Pluta, R., Furmaga-Jabłonska, W., Maciejewski, R., Ułamek-Kozioł, M. & Jabłonski, M. Brain ischemia activates β- and γ-secretase cleavage of amyloid precursor protein: significance in sporadic Alzheimer’s disease. Mol. Neurobiol. 47, 425–434 (2013).
pubmed: 23080191 doi: 10.1007/s12035-012-8360-z
ElAli, A., Thériault, P., Préfontaine, P. & Rivest, S. Mild chronic cerebral hypoperfusion induces neurovascular dysfunction, triggering peripheral β-amyloid brain entry and aggregation. Acta Neuropathol. Commun. 1, 75 (2013).
pubmed: 24252187 pmcid: 3843528 doi: 10.1186/2051-5960-1-75
Pomara, N. et al. Lower CSF amyloid beta peptides and higher F2-isoprostanes in cognitively intact elderly individuals with major depressive disorder. Am. J. Psychiatry 169, 523–530 (2012).
pubmed: 22764362 pmcid: 3586557 doi: 10.1176/appi.ajp.2011.11081153
Wu, K. Y. et al. Increased brain amyloid deposition in patients with a lifetime history of major depression: evidenced on
pubmed: 24233127 doi: 10.1007/s00259-013-2627-0
Donovan, N. J. et al. Longitudinal association of amyloid β and anxious-depressive symptoms in cognitively normal older adults. Am. J. Psychiatry 175, 530–537 (2018).
pubmed: 29325447 doi: 10.1176/appi.ajp.2017.17040442 pmcid: 5988933
Bryson, J. B. et al. Amyloid precursor protein (APP) contributes to pathology in the SOD1(G93A) mouse model of amyotrophic lateral sclerosis. Hum. Mol. Genet. 21, 3871–3882 (2012).
pubmed: 22678056 doi: 10.1093/hmg/dds215
Coan, G. & Mitchell, C. S. An assessment of possible neuropathology and clinical relationships in 46 sporadic amyotrophic lateral sclerosis patient autopsies. Neurodegener. Dis. 15, 301–312 (2015).
pubmed: 26183171 doi: 10.1159/000433581
Zetterberg, H. et al. Hypoxia due to cardiac arrest induces a time-dependent increase in serum amyloid β levels in humans. PLOS ONE 6, e28263 (2011).
pubmed: 22194817 pmcid: 3237426 doi: 10.1371/journal.pone.0028263
Palotás, A. et al. Coronary artery bypass surgery provokes Alzheimer’s disease-like changes in the cerebrospinal fluid. J. Alzheimers Dis. 21, 1153–1164 (2010).
pubmed: 21504113 doi: 10.3233/JAD-2010-100702
Reinsfelt, B., Westerlind, A., Blennow, K., Zetterberg, H. & Ricksten, S. E. Open-heart surgery increases cerebrospinal fluid levels of Alzheimer-associated amyloid β. Acta Anaesthesiol. Scand. 57, 82–88 (2013).
pubmed: 22998015 doi: 10.1111/j.1399-6576.2012.02769.x
Hu, Y. et al. Effects of heart bypass surgery on plasma Aβ40 and Aβ42 levels in infants and young children. Medicine 95, e2684 (2016).
pubmed: 26871797 pmcid: 4753892 doi: 10.1097/MD.0000000000002684
Ooms, S. et al. Effect of 1 night of total sleep deprivation on cerebrospinal fluid β-amyloid 42 in healthy middle-aged men: a randomized clinical trial. JAMA Neurol. 71, 971–977 (2014).
pubmed: 24887018 doi: 10.1001/jamaneurol.2014.1173
Lucey, B. P. et al. Effect of sleep on overnight cerebrospinal fluid amyloid β kinetics. Ann. Neurol. 83, 197–204 (2018).
pubmed: 29220873 pmcid: 5876097 doi: 10.1002/ana.25117
Shokri-Kojori, E. et al. β-Amyloid accumulation in the human brain after one night of sleep deprivation. Proc. Natl Acad. Sci. USA 115, 4483–4488 (2018).
pubmed: 29632177 doi: 10.1073/pnas.1721694115 pmcid: 5924922
Ju, Y. S. et al. Slow wave sleep disruption increases cerebrospinal fluid amyloid-β levels. Brain 140, 2104–2111 (2017).
pubmed: 28899014 pmcid: 5790144 doi: 10.1093/brain/awx148
Zhao, H. Y. et al. Chronic sleep restriction induces cognitive deficits and cortical β-amyloid deposition in mice via BACE1-antisense activation. CNS Neurosci. Ther. 23, 233–240 (2017).
pubmed: 28145081 doi: 10.1111/cns.12667 pmcid: 6492718
Brothers, H. M., Gosztyla, M. L. & Robinson, S. R. The physiological roles of amyloid-β peptide hint at new ways to treat Alzheimer’s disease. Front. Aging Neurosci. 10, 118 (2018).
pubmed: 29922148 pmcid: 5996906 doi: 10.3389/fnagi.2018.00118
Lee, H. G. et al. Amyloid-β in Alzheimer disease: the null versus the alternate hypotheses. J. Pharmacol. Exp. Ther. 321, 823–829 (2007).
pubmed: 17229880 doi: 10.1124/jpet.106.114009
Kokjohn, T. A., Maarouf, C. L. & Roher, A. E. Is Alzheimer’s disease amyloidosis the result of a repair mechanism gone astray? Alzheimers Dement. 8, 574–583 (2012).
pubmed: 22047632 doi: 10.1016/j.jalz.2011.05.2429
Krstic, D. & Knuesel, I. Deciphering the mechanism underlying late-onset Alzheimer disease. Nat. Rev. Neurol. 9, 25–34 (2013).
pubmed: 23183882 doi: 10.1038/nrneurol.2012.236
Struble, R. G. et al. Is brain amyloid production a cause or a result of dementia of the Alzheimer’s type? J. Alzheimers Dis. 22, 393–399 (2010).
pubmed: 20847431 pmcid: 3079347 doi: 10.3233/JAD-2010-100846
Herrup, K. Reimagining Alzheimer’s disease — an age-based hypothesis. J. Neurosci. 30, 16755–16762 (2010).
pubmed: 21159946 pmcid: 3004746 doi: 10.1523/JNEUROSCI.4521-10.2010
Castellani, R. J., Lee., H. G., Zhu, X., Perry, G. & Smith, M. A. Alzheimer disease pathology as a host response. J. Neuropathol. Exp. Neurol. 67, 523–531 (2008).
pubmed: 18520771 doi: 10.1097/NEN.0b013e318177eaf4
Castello, M. A. & Soriano, S. Rational heterodoxy: cholesterol reformation of the amyloid doctrine. Ageing Res. Rev. 12, 282–288 (2013).
pubmed: 22771381 doi: 10.1016/j.arr.2012.06.007
Aisen, P. S. et al. Tramiprosate in mild-to-moderate Alzheimer’s disease — a randomized, double-blind, placebo-controlled, multi-centre study (the Alphase Study). Arch. Med. Sci. 7, 102–111 (2011).
pubmed: 22291741 pmcid: 3258678 doi: 10.5114/aoms.2011.20612
Green, R. C. et al. Effect of tarenflurbil on cognitive decline and activities of daily living in patients with mild Alzheimer disease: a randomized controlled trial. JAMA 302, 2557–2564 (2009).
pubmed: 20009055 pmcid: 2902875 doi: 10.1001/jama.2009.1866
Salloway, S. et al. A phase 2 randomized trial of ELND005, scyllo-inositol, in mild to moderate Alzheimer disease. Neurology 77, 1253–1262 (2011).
pubmed: 21917766 pmcid: 3179648 doi: 10.1212/WNL.0b013e3182309fa5
Kirk, R. Clinical trials in CNS — SMi’s eighth annual conference. IDrugs 13, 66–69 (2010).
pubmed: 20127552
Landen, J. W. et al. Multiple-dose ponezumab for mild-to-moderate Alzheimer’s disease: safety and efficacy. Alzheimers Dement. 3, 339–347 (2017).
doi: 10.1016/j.trci.2017.04.003
Doody, R. S. et al. A phase 3 trial of semagacestat for treatment of Alzheimer’s disease. N. Engl. J. Med. 369, 341–350 (2013).
pubmed: 23883379 doi: 10.1056/NEJMoa1210951
Salloway, S. et al. Two phase 3 trials of bapineuzumab in mild-to-moderate Alzheimer’s disease. N. Engl. J. Med. 370, 322–333 (2014).
pubmed: 24450891 pmcid: 4159618 doi: 10.1056/NEJMoa1304839
Coric, V. et al. Safety and tolerability of the γ-secretase inhibitor avagacestat in a phase 2 study of mild to moderate Alzheimer disease. Arch. Neurol. 69, 1430–1440 (2012).
pubmed: 22892585 doi: 10.1001/archneurol.2012.2194
Coric, V. et al. Targeting prodromal Alzheimer disease with avagacestat: a randomized clinical trial. JAMA Neurol. 72, 1324–1333 (2015).
pubmed: 26414022 doi: 10.1001/jamaneurol.2015.0607
Relkin, N. R. et al. A phase 3 trial of IV immunoglobulin for Alzheimer disease. Neurology 88, 1768–1775 (2017).
pubmed: 28381506 pmcid: 5409846 doi: 10.1212/WNL.0000000000003904
Lahiri, D. K., Maloney, B., Long, J. M. & Greig, N. H. Lessons from a BACE1 inhibitor trial: off-site but not off base. Alzheimers Dement. 10(Suppl.), S411–S419 (2014).
pubmed: 24530026 pmcid: 4205206
Yan, R. Stepping closer to treating Alzheimer’s disease patients with BACE1 inhibitor drugs. Transl Neurodegener. 5, 13 (2016).
pubmed: 27418961 pmcid: 4944430 doi: 10.1186/s40035-016-0061-5
Schneeberger, A. et al. Results from a phase II study to assess the clinical and immunological activity of AFFITOPE® AD02 in patients with early Alzheimer’s disease. J. Prev. Alzheimers Dis. 2, 103–114 (2015).
pubmed: 29231230
Villemagne, V. L. et al. A randomized, exploratory molecular imaging study targeting amyloid β with a novel 8-OH quinoline in Alzheimer’s disease: the PBT2-204 IMAGINE study. Alzheimers Dement. 3, 622–635 (2017).
doi: 10.1016/j.trci.2017.10.001
Carroll, J. Eli Lilly shutters the last PhIII sola study, certain of failure. Endpoints News https://endpts.com/eli-lilly-shutters-the-last-phiii-sola-study-certain-of-failure/ (2017).
Grifols. Grifols AMBAR results demonstrate a significant reduction in the progression of moderate Alzheimer’s disease. https://www.grifols.com/en/view-news/-/new/grifols-ambar-results-demonstrate-a-significant-reduction-in-the-progression-of-moderate-alzheimers-disease (2018).
Xiao, S. et al. Phase 3 clinical trial for a novel and multi-targeted oligosaccharide in patients with mild-moderate AD in China [abstract OC3]. Presented at the 11th Clinical Trials on Alzheimer’s Disease, Barcelona, Spain (2018).

Auteurs

Francesco Panza (F)

Neurodegenerative Disease Unit, Department of Basic Medicine, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari, Italy. geriat.dot@uniba.it.
Department of Clinical Research in Neurology, Neurodegenerative Disease Unit, University of Bari Aldo Moro, Pia Fondazione Cardinale G. Panico, Tricase, Lecce, Italy. geriat.dot@uniba.it.
Geriatric Unit & Laboratory of Gerontology and Geriatrics, Department of Medical Sciences, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Foggia, Italy. geriat.dot@uniba.it.

Madia Lozupone (M)

Neurodegenerative Disease Unit, Department of Basic Medicine, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari, Italy.

Giancarlo Logroscino (G)

Neurodegenerative Disease Unit, Department of Basic Medicine, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari, Italy.
Department of Clinical Research in Neurology, Neurodegenerative Disease Unit, University of Bari Aldo Moro, Pia Fondazione Cardinale G. Panico, Tricase, Lecce, Italy.

Bruno P Imbimbo (BP)

Department of Research and Development, Chiesi Farmaceutici, Parma, Italy.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH