All-trans retinoic acid prevents cisplatin-induced nephrotoxicity in rats.
All-trans retinoic acid
Cisplatin
Nephrotoxicity
Journal
Naunyn-Schmiedeberg's archives of pharmacology
ISSN: 1432-1912
Titre abrégé: Naunyn Schmiedebergs Arch Pharmacol
Pays: Germany
ID NLM: 0326264
Informations de publication
Date de publication:
02 2019
02 2019
Historique:
received:
18
10
2018
accepted:
11
12
2018
pubmed:
6
1
2019
medline:
25
12
2019
entrez:
6
1
2019
Statut:
ppublish
Résumé
The aim of this study is to investigate the effects of all-trans retinoic acid (ATRA) use on cisplatin (CP)-induced nephrotoxicty. Twenty-eight rats were randomly divided into four groups. The rats in the control group were injected a single dose of 1 ml/kg saline intra-peritoneally (IP) during 10 days. The rats in the ATRA group were injected a single dose of ATRA during 10 days. The rats in the ATRA+CP group were injected a single dose of CP on the fourth day of the 10 days of ATRA treatment. The rats in the CP group were injected a single dose of CP on the fourth day of 10 days without administering a treatment. After treatment, the groups were compared with regard to total antioxidant status (TAS), total oxidant status (TOS), and oxidative stress index (OSI) levels in renal tissue and renal histopathology. The serum creatinine and urea values were statistically significantly higher in the CP group compared to the other groups. The serum creatinine and urea values were statistically significantly lower in the ATRA+CP group when compared to the CP group. Although the TOS and OSI levels were found to be lower in the ATRA+CP group compared to the CP group, the difference was not statistically significant. Administration of ATRA together with CP was observed to reduce the histopathologic destruction in the kidney and lead to mild tubular degeneration, vacuolization, and necrosis (57.1% grade 1; 28.6% grade2, and 14.3% grade 3 necrosis). The results of the present study have revealed that ATRA administration ameliorates CP-induced nephrotoxicity; however, further studies are required to identify this issue before clinical application.
Identifiants
pubmed: 30610249
doi: 10.1007/s00210-018-01603-0
pii: 10.1007/s00210-018-01603-0
doi:
Substances chimiques
Antineoplastic Agents
0
Protective Agents
0
Tretinoin
5688UTC01R
Cisplatin
Q20Q21Q62J
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
159-164Références
Aburto A, Barria A, Cardenas A, Carpio D, Figueroa CD, Burgos ME, Ardiles L (2014) Pre-stimulation of the kallikrein system in cisplatin-induced acute renal injury: an approach to renoprotection. Toxicol Appl Pharmacol 280(2):216–223. https://doi.org/10.1016/j.taap.2014.07.023
doi: 10.1016/j.taap.2014.07.023
pubmed: 25110056
Alibakhshi T, Khodayar MJ, Khorsandi L, Rashno M, Zeidooni L (2018) Protective effects of zingerone on oxidative stress and inflammation in cisplatin-induced rat nephrotoxicity. Biomed Pharmacother 105:225–232. https://doi.org/10.1016/j.biopha.2018.05.085
doi: 10.1016/j.biopha.2018.05.085
pubmed: 29857302
Arany I, Safirstein RL (2003) Cisplatin nephrotoxicity. Semin Nephrol 23(5):460–464
doi: 10.1016/S0270-9295(03)00089-5
pubmed: 13680535
Bouhadjari N, Gabato W, Calabrese D, Msika S, Keita H (2016) Hyperthermic intraperitoneal chemotherapy with cisplatin: amifostine prevents acute severe renal impairment. Eur J Surg Oncol 42(2):219–223. https://doi.org/10.1016/j.ejso.2015.07.016
doi: 10.1016/j.ejso.2015.07.016
pubmed: 26278017
Cekmen M, Ilbey YO, Ozbek E, Simsek A, Somay A, Ersoz C (2009) Curcumin prevents oxidative renal damage induced by acetaminophen in rats. Food Chem Toxicol 47(7):1480–1484. https://doi.org/10.1016/j.fct.2009.03.034
doi: 10.1016/j.fct.2009.03.034
pubmed: 19345714
Crona DJ, Faso A, Nishijima TF, McGraw KA, Galsky MD, Milowsky MI (2017) A systematic review of strategies to prevent cisplatin-induced nephrotoxicity. Oncologist 22(5):609–619. https://doi.org/10.1634/theoncologist.2016-0319
doi: 10.1634/theoncologist.2016-0319
pubmed: 28438887
pmcid: 5423518
Elsayed AM, Abdelghany TM, Akool el S, Abdel-Aziz AA, Abdel-Bakky MS (2016) All-trans retinoic acid potentiates cisplatin-induced kidney injury in rats: impact of retinoic acid signaling pathway. Naunyn Schmiedeberg’s Arch Pharmacol 389(3):327–337. https://doi.org/10.1007/s00210-015-1193-3
doi: 10.1007/s00210-015-1193-3
Erel O (2004) A novel automated method to measure total antioxidant response against potent free radical reactions. Clin Biochem 37(2):112–119
doi: 10.1016/j.clinbiochem.2003.10.014
pubmed: 14725941
Erel O (2005) A new automated colorimetric method for measuring total oxidant status. Clin Biochem 38(12):1103–1111. https://doi.org/10.1016/j.clinbiochem.2005.08.008
doi: 10.1016/j.clinbiochem.2005.08.008
pubmed: 16214125
Ewees MG, Abdelghany TM, Abdel-Aziz AA, Abdel-Bakky MS (2015) All-trans retinoic acid mitigates methotrexate-induced liver injury in rats; relevance of retinoic acid signaling pathway. Naunyn Schmiedeberg's Arch Pharmacol 388(9):931–938. https://doi.org/10.1007/s00210-015-1130-5
doi: 10.1007/s00210-015-1130-5
Ezaki T, Nishiumi S, Azuma T, Yoshida M (2017) Metabolomics for the early detection of cisplatin-induced nephrotoxicity. Toxicol Res (Camb) 6(6):843–853. https://doi.org/10.1039/c7tx00171a
doi: 10.1039/C7TX00171A
Gomez-Sierra T, Eugenio-Perez D, Sanchez-Chinchillas A, Pedraza-Chaverri J (2018) Role of food-derived antioxidants against cisplatin induced-nephrotoxicity. Food Chem Toxicol 120:230–242. https://doi.org/10.1016/j.fct.2018.07.018
doi: 10.1016/j.fct.2018.07.018
pubmed: 29990577
Gudas LJ (2012) Emerging roles for retinoids in regeneration and differentiation in normal and disease states. Biochim Biophys Acta 1821(1):213–221. https://doi.org/10.1016/j.bbalip.2011.08.002
doi: 10.1016/j.bbalip.2011.08.002
pubmed: 21855651
Han SY, So GA, Jee YH, Han KH, Kang YS, Kim HK, Kang SW, Han DS, Han JY, Cha DR (2004) Effect of retinoic acid in experimental diabetic nephropathy. Immunol Cell Biol 82(6):568–576. https://doi.org/10.1111/j.1440-1711.2004.01287.x
doi: 10.1111/j.1440-1711.2004.01287.x
pubmed: 15550114
Ilbey YO, Ozbek E, Cekmen M, Somay A, Ozcan L, Otunctemur A, Simsek A, Mete F (2009) Melatonin prevents acetaminophen-induced nephrotoxicity in rats. Int Urol Nephrol 41(3):695–702. https://doi.org/10.1007/s11255-008-9503-z
doi: 10.1007/s11255-008-9503-z
pubmed: 19117117
Jung K, An JM, Eom DW, Kang KS, Kim SN (2017) Preventive effect of fermented black ginseng against cisplatin-induced nephrotoxicity in rats. J Ginseng Res 41(2):188–194. https://doi.org/10.1016/j.jgr.2016.03.001
doi: 10.1016/j.jgr.2016.03.001
pubmed: 28413323
Kavukcu S, Turkmen MA, Soylu A (2001) Could the effective mechanisms of retinoids on nephrogenesis be also operative on the amelioration of injury in acquired renal lesions? Pediatr Nephrol 16(8):689–690
doi: 10.1007/s004670100606
pubmed: 11519906
Kim CS, Park JS, Ahn CW, Kim KR (2015) All-trans retinoic acid has a potential therapeutic role for diabetic nephropathy. Yonsei Med J 56(6):1597–1603. https://doi.org/10.3349/ymj.2015.56.6.1597
doi: 10.3349/ymj.2015.56.6.1597
pubmed: 26446642
pmcid: 4630048
Lelievre-Pegorier M, Vilar J, Ferrier ML, Moreau E, Freund N, Gilbert T, Merlet-Benichou C (1998) Mild vitamin A deficiency leads to inborn nephron deficit in the rat. Kidney Int 54(5):1455–1462. https://doi.org/10.1046/j.1523-1755.1998.00151.x
doi: 10.1046/j.1523-1755.1998.00151.x
pubmed: 9844121
Moreb JS, Ucar-Bilyeu DA, Khan A (2017) Use of retinoic acid/aldehyde dehydrogenase pathway as potential targeted therapy against cancer stem cells. Cancer Chemother Pharmacol 79(2):295–301. https://doi.org/10.1007/s00280-016-3213-5
doi: 10.1007/s00280-016-3213-5
pubmed: 27942929
Moulder JE, Fish BL, Regner KR, Cohen EP, Raife TJ (2002) Retinoic acid exacerbates experimental radiation nephropathy. Radiat Res 157(2):199–203
doi: 10.1667/0033-7587(2002)157[0199:RAEERN]2.0.CO;2
pubmed: 11835684
Nematbakhsh M, Ashrafi F, Pezeshki Z, Fatahi Z, Kianpoor F, Sanei MH, Talebi A (2012) A histopathological study of nephrotoxicity, hepatoxicity or testicular toxicity: which one is the first observation as side effect of Cisplatin-induced toxicity in animal model? J Nephropathol 1(3):190–193. https://doi.org/10.5812/nephropathol.8122
doi: 10.5812/nephropathol.8122
pubmed: 24475415
pmcid: 3886150
Oseto S, Moriyama T, Kawada N, Nagatoya K, Takeji M, Ando A, Yamamoto T, Imai E, Hori M (2003) Therapeutic effect of all-trans retinoic acid on rats with anti-GBM antibody glomerulonephritis. Kidney Int 64(4):1241–1252. https://doi.org/10.1046/j.1523-1755.2003.00219.x
doi: 10.1046/j.1523-1755.2003.00219.x
pubmed: 12969142
Ozbek E, Ilbey YO, Simsek A, Cekmen M, Mete F, Somay A (2010) Rosiglitazone, peroxisome proliferator receptor-gamma agonist, ameliorates gentamicin-induced nephrotoxicity in rats. Int Urol Nephrol 42(3):579–587. https://doi.org/10.1007/s11255-009-9645-7
doi: 10.1007/s11255-009-9645-7
pubmed: 19779845
Penniston KL, Tanumihardjo SA (2006) The acute and chronic toxic effects of vitamin A. Am J Clin Nutr 83(2):191–201. https://doi.org/10.1093/ajcn/83.2.191
doi: 10.1093/ajcn/83.2.191
pubmed: 16469975
Saifi MA, Sangomla S, Khurana A, Godugu C (2018) Protective effect of nanoceria on cisplatin-induced nephrotoxicity by amelioration of oxidative stress and pro-inflammatory mechanisms. Biol Trace Elem Res 1:1–12
Tang XH, Gudas LJ (2011) Retinoids, retinoic acid receptors, and cancer. Annu Rev Pathol 6:345–364. https://doi.org/10.1146/annurev-pathol-011110-130303
doi: 10.1146/annurev-pathol-011110-130303