Low-energy extracorporeal shock wave ameliorates ischemic acute kidney injury in rats.
Ischemic acute kidney injury
Lymphangiogenesis
Shock wave
Vascular endothelial growth factor
Journal
Clinical and experimental nephrology
ISSN: 1437-7799
Titre abrégé: Clin Exp Nephrol
Pays: Japan
ID NLM: 9709923
Informations de publication
Date de publication:
May 2019
May 2019
Historique:
received:
05
11
2017
accepted:
02
01
2019
pubmed:
9
1
2019
medline:
10
9
2019
entrez:
9
1
2019
Statut:
ppublish
Résumé
Low-energy extracorporeal shock wave (SW) improves ventricular function in ischemic cardiomyopathy through the upregulation of vascular endothelial growth factor (VEGF). VEGF is known to play important roles in acute kidney injury (AKI), and the present study investigates the efficacy of SW for AKI by renal ischemia-reperfusion (I/R) injury. Male 8-week-old Sprague-Dawley rats were divided into the following groups: SW-treated I/R group (I/R-SW), untreated I/R group (I/R), and Sham group. To induce I/R, the left renal pedicles were clamped for 45 min. The I/R-SW group was treated with SW to both kidneys on the immediate postoperative period (day 0), days 1, 2, 7, 8, 9, 14, 15, and 16. Rats were killed on day 2 and day 20 to determine histology, renal function, and Vegf family mRNA expression. Plasma creatinine on day 2 was significantly lower in the I/R-SW group than in the I/R group. Light microscopy revealed significantly lower tubular injury scores for the outer medulla in the I/R-SW group than in the I/R group. Podoplanin-positive lymphatic vessels were significantly increased in the left (affected side) outer medulla in the I/R-SW group on day 20. The expression levels of Vegf in the right (intact side) cortex were significantly higher in the I/R-SW group than in the I/R group on day 2. Shock wave ameliorated renal tubular injury and renal function in AKI model, through the stimulation of Vegf family expression and lymphangiogenesis. SW may be effective as a non-invasive treatment for ischemic AKI.
Sections du résumé
BACKGROUND
BACKGROUND
Low-energy extracorporeal shock wave (SW) improves ventricular function in ischemic cardiomyopathy through the upregulation of vascular endothelial growth factor (VEGF). VEGF is known to play important roles in acute kidney injury (AKI), and the present study investigates the efficacy of SW for AKI by renal ischemia-reperfusion (I/R) injury.
METHODS
METHODS
Male 8-week-old Sprague-Dawley rats were divided into the following groups: SW-treated I/R group (I/R-SW), untreated I/R group (I/R), and Sham group. To induce I/R, the left renal pedicles were clamped for 45 min. The I/R-SW group was treated with SW to both kidneys on the immediate postoperative period (day 0), days 1, 2, 7, 8, 9, 14, 15, and 16. Rats were killed on day 2 and day 20 to determine histology, renal function, and Vegf family mRNA expression.
RESULTS
RESULTS
Plasma creatinine on day 2 was significantly lower in the I/R-SW group than in the I/R group. Light microscopy revealed significantly lower tubular injury scores for the outer medulla in the I/R-SW group than in the I/R group. Podoplanin-positive lymphatic vessels were significantly increased in the left (affected side) outer medulla in the I/R-SW group on day 20. The expression levels of Vegf in the right (intact side) cortex were significantly higher in the I/R-SW group than in the I/R group on day 2.
CONCLUSION
CONCLUSIONS
Shock wave ameliorated renal tubular injury and renal function in AKI model, through the stimulation of Vegf family expression and lymphangiogenesis. SW may be effective as a non-invasive treatment for ischemic AKI.
Identifiants
pubmed: 30617840
doi: 10.1007/s10157-019-01689-7
pii: 10.1007/s10157-019-01689-7
doi:
Substances chimiques
Vascular Endothelial Growth Factor A
0
Nitric Oxide Synthase Type III
EC 1.14.13.39
Nos3 protein, rat
EC 1.14.13.39
Types de publication
Evaluation Study
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
597-605Références
Yasuda H, Kato A, Fujigaki Y, Hishida A, Shizuoka Kidney Disease Study G. Incidence and clinical outcomes of acute kidney injury requiring renal replacement therapy in Japan. Ther Apher Dial. 2010;14(6):541–6. https://doi.org/10.1111/j.1744-9987.2010.00826.x .
doi: 10.1111/j.1744-9987.2010.00826.x
pubmed: 21118360
Schetz M, Gunst J, De Vlieger G, Van den Berghe G. Recovery from AKI in the critically ill: potential confounders in the evaluation. Intensive Care Med. 2015;41(9):1648–57. https://doi.org/10.1007/s00134-015-3946-3 .
doi: 10.1007/s00134-015-3946-3
pubmed: 26156107
Chade AR. VEGF: potential therapy for renal regeneration. F1000. Med Rep. 2012;4:1. https://doi.org/10.3410/M4-1 .
doi: 10.3410/M4-1
Doi K, Noiri E, Fujita T. Role of vascular endothelial growth factor in kidney disease. Curr Vasc Pharmacol. 2010;8(1):122–8.
doi: 10.2174/157016110790226606
pubmed: 19485913
Nishida T, Shimokawa H, Oi K, Tatewaki H, Uwatoku T, Abe K, et al. Extracorporeal cardiac shock wave therapy markedly ameliorates ischemia-induced myocardial dysfunction in pigs in vivo. Circulation. 2004;110(19):3055–61. https://doi.org/10.1161/01.CIR.0000148849.51177.97 .
doi: 10.1161/01.CIR.0000148849.51177.97
pubmed: 15520304
Fukumoto Y, Ito A, Uwatoku T, Matoba T, Kishi T, Tanaka H, et al. Extracorporeal cardiac shock wave therapy ameliorates myocardial ischemia in patients with severe coronary artery disease. Coron Artery Dis. 2006;17(1):63–70.
doi: 10.1097/00019501-200602000-00011
pubmed: 16374144
Kikuchi Y, Ito K, Ito Y, Shiroto T, Tsuburaya R, Aizawa K, et al. Double-blind and placebo-controlled study of the effectiveness and safety of extracorporeal cardiac shock wave therapy for severe angina pectoris. Circ J. 2010;74(3):589–91.
doi: 10.1253/circj.CJ-09-1028
pubmed: 20134096
Serizawa F, Ito K, Kawamura K, Tsuchida K, Hamada Y, Zukeran T, et al. Extracorporeal shock wave therapy improves the walking ability of patients with peripheral artery disease and intermittent claudication. Circ J. 2012;76(6):1486–93.
doi: 10.1253/circj.CJ-11-1216
pubmed: 22447002
Abe Y, Ito K, Hao K, Shindo T, Ogata T, Kagaya Y, et al. Extracorporeal low-energy shock-wave therapy exerts anti-inflammatory effects in a rat model of acute myocardial infarction. Circ J. 2014;78(12):2915–25.
doi: 10.1253/circj.CJ-14-0230
pubmed: 25274132
Ito Y, Ito K, Shiroto T, Tsuburaya R, Yi GJ, Takeda M, et al. Cardiac shock wave therapy ameliorates left ventricular remodeling after myocardial ischemia-reperfusion injury in pigs in vivo. Coron Artery Dis. 2010;21(5):304–11.
doi: 10.1097/MCA.0b013e32833aec62
pubmed: 20617568
Uwatoku T, Ito K, Abe K, Oi K, Hizume T, Sunagawa K, et al. Extracorporeal cardiac shock wave therapy improves left ventricular remodeling after acute myocardial infarction in pigs. Coron Artery Dis. 2007;18(5):397–404. https://doi.org/10.1097/MCA.0b013e328089f19b .
doi: 10.1097/MCA.0b013e328089f19b
pubmed: 17627190
Serizawa F, Ito K, Matsubara M, Sato A, Shimokawa H, Satomi S. Extracorporeal shock wave therapy induces therapeutic lymphangiogenesis in a rat model of secondary lymphoedema. Eur J Vasc Endovasc Surg. 2011;42(2):254–60. https://doi.org/10.1016/j.ejvs.2011.02.029 .
doi: 10.1016/j.ejvs.2011.02.029
pubmed: 21454105
Yamaya S, Ozawa H, Kanno H, Kishimoto KN, Sekiguchi A, Tateda S, et al. Low-energy extracorporeal shock wave therapy promotes vascular endothelial growth factor expression and improves locomotor recovery after spinal cord injury. J Neurosurg. 2014;121(6):1514–25. https://doi.org/10.3171/2014.8.JNS132562 .
doi: 10.3171/2014.8.JNS132562
pubmed: 25280090
Gigliotti JC, Huang L, Ye H, Bajwa A, Chattrabhuti K, Lee S, et al. Ultrasound prevents renal ischemia-reperfusion injury by stimulating the splenic cholinergic anti-inflammatory pathway. J Am Soc Nephrol. 2013;24(9):1451–60. https://doi.org/10.1681/asn.2013010084 .
doi: 10.1681/ASN.2013010084
pubmed: 23907510
pmcid: 3752954
Gigliotti JC, Huang L, Bajwa A, Ye H, Mace EH, Hossack JA, et al. Ultrasound modulates the splenic neuroimmune axis in attenuating AKI. J Am Soc Nephrol. 2015;26(10):2470–81. https://doi.org/10.1681/asn.2014080769 .
doi: 10.1681/ASN.2014080769
pubmed: 25644106
pmcid: 4587697
Roelofs JJ, Rouschop KM, Leemans JC, Claessen N, de Boer AM, Frederiks WM, et al. Tissue-type plasminogen activator modulates inflammatory responses and renal function in ischemia reperfusion injury. J Am Soc Nephrol. 2006;17(1):131–40. https://doi.org/10.1681/ASN.2005010089 .
doi: 10.1681/ASN.2005010089
pubmed: 16291841
Sakamoto I, Ito Y, Mizuno M, Suzuki Y, Sawai A, Tanaka A, et al. Lymphatic vessels develop during tubulointerstitial fibrosis. Kidney Int. 2009;75(8):828–38. https://doi.org/10.1038/ki.2008.661 .
doi: 10.1038/ki.2008.661
pubmed: 19145238
Apfel RE. Acoustic cavitation: a possible consequence of biomedical uses of ultrasound. Br J Cancer Suppl. 1982;5:140–6.
pubmed: 6950749
pmcid: 2149304
Maisonhaute E, Prado C, White PC, Compton RG. Surface acoustic cavitation understood via nanosecond electrochemistry. Part III: shear stress in ultrasonic cleaning. Ultrason Sonochem. 2002;9(6):297–303.
doi: 10.1016/S1350-4177(02)00089-5
pubmed: 12404794
Schrijvers BF, Flyvbjerg A, De Vriese AS. The role of vascular endothelial growth factor (VEGF) in renal pathophysiology. Kidney Int. 2004;65(6):2003–17. https://doi.org/10.1111/j.1523-1755.2004.00621.x .
doi: 10.1111/j.1523-1755.2004.00621.x
pubmed: 15149314
Sun D, Wang Y, Liu C, Zhou X, Li X, Xiao A. Effects of nitric oxide on renal interstitial fibrosis in rats with unilateral ureteral obstruction. Life Sci. 2012;90(23–24):900–9. https://doi.org/10.1016/j.lfs.2012.04.018 .
doi: 10.1016/j.lfs.2012.04.018
pubmed: 22572614
Leonard EC, Friedrich JL, Basile DP. VEGF-121 preserves renal microvessel structure and ameliorates secondary renal disease following acute kidney injury. Am J Physiol Ren Physiol. 2008;295(6):F1648-57. https://doi.org/10.1152/ajprenal.00099.2008 .
doi: 10.1152/ajprenal.00099.2008
Breen EC. VEGF in biological control. J Cell Biochem. 2007;102(6):1358–67. https://doi.org/10.1002/jcb.21579 .
doi: 10.1002/jcb.21579
pubmed: 17979153
Matsui K, Nagy-Bojarsky K, Laakkonen P, Krieger S, Mechtler K, Uchida S, et al. Lymphatic microvessels in the rat remnant kidney model of renal fibrosis: aminopeptidase p and podoplanin are discriminatory markers for endothelial cells of blood and lymphatic vessels. J Am Soc Nephrol. 2003;14(8):1981–9.
doi: 10.1097/01.ASN.0000076078.50889.43
pubmed: 12874451
Prowle JR, Echeverri JE, Ligabo EV, Ronco C, Bellomo R. Fluid balance and acute kidney injury. Nat Rev Nephrol. 2010;6(2):107–15. https://doi.org/10.1038/nrneph.2009.213 .
doi: 10.1038/nrneph.2009.213
pubmed: 20027192
Prowle JR, Kirwan CJ, Bellomo R. Fluid management for the prevention and attenuation of acute kidney injury. Nat Rev Nephrol. 2014;10(1):37–47. https://doi.org/10.1038/nrneph.2013.232 .
doi: 10.1038/nrneph.2013.232
pubmed: 24217464
Bi LY, Zhao DA, Yang DS, Guo JG, Liang B, Zhang RX, et al. Effects of autologous SCF- and G-CSF-mobilized bone marrow stem cells on hypoxia-inducible factor-1 in rats with ischemia-reperfusion renal injury. Genet Mol Res. 2015;14(2):4102–12. https://doi.org/10.4238/2015.April.27.25 .
doi: 10.4238/2015.April.27.25
pubmed: 25966182
Basile DP, Fredrich K, Chelladurai B, Leonard EC, Parrish AR. Renal ischemia reperfusion inhibits VEGF expression and induces ADAMTS-1, a novel VEGF inhibitor. Am J Physiol Ren Physiol. 2008;294(4):F928-36. https://doi.org/10.1152/ajprenal.00596.2007 .
doi: 10.1152/ajprenal.00596.2007
Labanaris AP, Kuhn R, Schott GE, Zugor V. Perirenal hematomas induced by extracorporeal shock wave lithotripsy (ESWL). Ther Manag Sci World J. 2007;7:1563–6. https://doi.org/10.1100/tsw.2007.236 .
doi: 10.1100/tsw.2007.236