First genomic study on Lake Tanganyika sprat Stolothrissa tanganicae: a lack of population structure calls for integrated management of this important fisheries target species.


Journal

BMC evolutionary biology
ISSN: 1471-2148
Titre abrégé: BMC Evol Biol
Pays: England
ID NLM: 100966975

Informations de publication

Date de publication:
08 01 2019
Historique:
received: 04 04 2018
accepted: 11 12 2018
entrez: 10 1 2019
pubmed: 10 1 2019
medline: 9 4 2019
Statut: epublish

Résumé

Clupeid fisheries in Lake Tanganyika (East Africa) provide food for millions of people in one of the world's poorest regions. Due to climate change and overfishing, the clupeid stocks of Lake Tanganyika are declining. We investigate the population structure of the Lake Tanganyika sprat Stolothrissa tanganicae, using for the first time a genomic approach on this species. This is an important step towards knowing if the species should be managed separately or as a single stock. Population structure is important for fisheries management, yet understudied for many African freshwater species. We hypothesize that distinct stocks of S. tanganicae could be present due to the large size of the lake (isolation by distance), limnological variation (adaptive evolution), or past separation of the lake (historical subdivision). On the other hand, high mobility of the species and lack of obvious migration barriers might have resulted in a homogenous population. We performed a population genetic study on wild-caught S. tanganicae through a combination of mitochondrial genotyping (96 individuals) and RAD sequencing (83 individuals). Samples were collected at five locations along a north-south axis of Lake Tanganyika. The mtDNA data had low global FST and, visualised in a haplotype network, did not show phylogeographic structure. RAD sequencing yielded a panel of 3504 SNPs, with low genetic differentiation (F Our results show at most very weak geographical structuring of the stock and do not provide evidence for genetic adaptation to historical or environmental differences over a north-south axis. Based on these results, we advise to manage the stock as one population, integrating one management strategy over the four riparian countries. These results are a first comprehensive study on the population structure of these important fisheries target species, and can guide fisheries management.

Sections du résumé

BACKGROUND
Clupeid fisheries in Lake Tanganyika (East Africa) provide food for millions of people in one of the world's poorest regions. Due to climate change and overfishing, the clupeid stocks of Lake Tanganyika are declining. We investigate the population structure of the Lake Tanganyika sprat Stolothrissa tanganicae, using for the first time a genomic approach on this species. This is an important step towards knowing if the species should be managed separately or as a single stock. Population structure is important for fisheries management, yet understudied for many African freshwater species. We hypothesize that distinct stocks of S. tanganicae could be present due to the large size of the lake (isolation by distance), limnological variation (adaptive evolution), or past separation of the lake (historical subdivision). On the other hand, high mobility of the species and lack of obvious migration barriers might have resulted in a homogenous population.
RESULTS
We performed a population genetic study on wild-caught S. tanganicae through a combination of mitochondrial genotyping (96 individuals) and RAD sequencing (83 individuals). Samples were collected at five locations along a north-south axis of Lake Tanganyika. The mtDNA data had low global FST and, visualised in a haplotype network, did not show phylogeographic structure. RAD sequencing yielded a panel of 3504 SNPs, with low genetic differentiation (F
CONCLUSION
Our results show at most very weak geographical structuring of the stock and do not provide evidence for genetic adaptation to historical or environmental differences over a north-south axis. Based on these results, we advise to manage the stock as one population, integrating one management strategy over the four riparian countries. These results are a first comprehensive study on the population structure of these important fisheries target species, and can guide fisheries management.

Identifiants

pubmed: 30621593
doi: 10.1186/s12862-018-1325-8
pii: 10.1186/s12862-018-1325-8
pmc: PMC6323704
doi:

Substances chimiques

DNA, Mitochondrial 0

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

6

Références

Mol Biol Evol. 2001 Feb;18(2):144-54
pubmed: 11158373
BMC Evol Biol. 2007 Oct 22;7:197
pubmed: 17953768
Mol Ecol Resour. 2011 Mar;11 Suppl 1:278-98
pubmed: 21429181
Mol Ecol. 2013 Jun;22(11):3124-40
pubmed: 23701397
Bioinformatics. 2012 Jun 15;28(12):1647-9
pubmed: 22543367
Ambio. 2016 Nov;45(7):753-764
pubmed: 27312662
Mol Ecol. 2011 Jun;20(11):2272-90
pubmed: 21518059
J Evol Biol. 2010 Oct;23(10):2267-2276
pubmed: 20796133
Ecology. 1967 Sep;48(5):731-736
pubmed: 34493008
Hydrobiologia. 2015 Apr 1;748(1):29-38
pubmed: 25983338
Bioinformatics. 2012 Oct 1;28(19):2537-9
pubmed: 22820204
Mol Biol Evol. 2017 Dec 1;34(12):3299-3302
pubmed: 29029172
Mol Biol Evol. 1999 Jan;16(1):37-48
pubmed: 10331250
Elife. 2016 May 03;5:
pubmed: 27138043
Int J Evol Biol. 2012;2012:574851
pubmed: 22888465
G3 (Bethesda). 2011 Aug;1(3):171-82
pubmed: 22384329
Mol Ecol. 2004 Apr;13(4):921-35
pubmed: 15012766
Methods Mol Biol. 2011;772:157-78
pubmed: 22065437
Mol Ecol. 2012 Aug;21(15):3686-703
pubmed: 22694661
Mol Ecol Resour. 2011 Mar;11 Suppl 1:184-94
pubmed: 21429174
Mol Biol Evol. 2013 Jul;30(7):1687-99
pubmed: 23543094
Philos Trans R Soc Lond B Biol Sci. 1996 Jun 29;351(1341):797-805
pubmed: 8693021
Bioinformatics. 2011 Aug 1;27(15):2156-8
pubmed: 21653522
Appl Environ Microbiol. 2005 Sep;71(9):5029-37
pubmed: 16151083
Proc Natl Acad Sci U S A. 2017 Apr 25;114(17):E3452-E3461
pubmed: 28389569
BMC Genet. 2010 Oct 15;11:94
pubmed: 20950446
Nature. 2000 May 11;405(6783):234-42
pubmed: 10821284
PLoS Genet. 2012 Jan;8(1):e1002453
pubmed: 22291602
Bioinformatics. 2008 Jun 1;24(11):1403-5
pubmed: 18397895
Mol Biol Evol. 2018 May 1;35(5):1284-1290
pubmed: 29474601
Hydrobiologia. 2019;832(1):93-103
pubmed: 30880831
PLoS One. 2008;3(10):e3376
pubmed: 18852878
Mol Ecol. 2013 Jun;22(11):2931-40
pubmed: 23294045
Evolution. 2003 May;57(5):1182-95
pubmed: 12836834
Proc Natl Acad Sci U S A. 2003 Aug 5;100(16):9440-5
pubmed: 12883005
Mol Mar Biol Biotechnol. 1994 Oct;3(5):294-9
pubmed: 7881515
Malar J. 2014 Oct 07;13:395
pubmed: 25288487
Mol Biol Evol. 2016 Jul;33(7):1870-4
pubmed: 27004904
Genetics. 2008 Oct;180(2):977-93
pubmed: 18780740
Mol Ecol Resour. 2011 Mar;11 Suppl 1:137-49
pubmed: 21429170
Nucleic Acids Res. 2004 Mar 19;32(5):1792-7
pubmed: 15034147

Auteurs

Els L R De Keyzer (ELR)

Laboratory of Biodiversity and Evolutionary Genomics, KU Leuven, Charles Deberiotstraat 32, B-3000, Leuven, Belgium. els.dekeyzer@kuleuven.be.
Capacities for Biodiversity and Sustainable Development (CEBioS), Operational Directorate Natural Environment, Royal Belgian Institute of Natural Sciences, Vautierstraat 29, B-1000, Brussels, Belgium. els.dekeyzer@kuleuven.be.

Zoë De Corte (Z)

Joint Experimental Molecular Unit & Biology Department, Royal Museum for Central Africa, Leuvensesteenweg 13, B-3080, Tervuren, Belgium.
Joint Experimental Molecular Unit & Operational Directorate Taxonomy and Phylogeny, Royal Belgian Institute of Natural Sciences, Vautierstraat 29, B-1000, Brussels, Belgium.

Maarten Van Steenberge (M)

Laboratory of Biodiversity and Evolutionary Genomics, KU Leuven, Charles Deberiotstraat 32, B-3000, Leuven, Belgium.
Joint Experimental Molecular Unit & Biology Department, Royal Museum for Central Africa, Leuvensesteenweg 13, B-3080, Tervuren, Belgium.
Joint Experimental Molecular Unit & Operational Directorate Taxonomy and Phylogeny, Royal Belgian Institute of Natural Sciences, Vautierstraat 29, B-1000, Brussels, Belgium.

Joost A M Raeymaekers (JAM)

Laboratory of Biodiversity and Evolutionary Genomics, KU Leuven, Charles Deberiotstraat 32, B-3000, Leuven, Belgium.
Faculty of Bioscience and Aquaculture, Nord University, Universitetsalléen 11, N-8026, Bodø, Norway.

Federico C F Calboli (FCF)

Laboratory of Biodiversity and Evolutionary Genomics, KU Leuven, Charles Deberiotstraat 32, B-3000, Leuven, Belgium.

Nikol Kmentová (N)

Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, CZ-611 37, Brno, Czech Republic.

Théophile N'Sibula Mulimbwa (T)

Département de Biologie, Centre de Recherche en Hydrobiologie, B.P. 73, Uvira, Democratic Republic of Congo.

Massimiliano Virgilio (M)

Joint Experimental Molecular Unit & Biology Department, Royal Museum for Central Africa, Leuvensesteenweg 13, B-3080, Tervuren, Belgium.

Carl Vangestel (C)

Joint Experimental Molecular Unit & Operational Directorate Taxonomy and Phylogeny, Royal Belgian Institute of Natural Sciences, Vautierstraat 29, B-1000, Brussels, Belgium.

Pascal Masilya Mulungula (PM)

Département de Biologie, Centre de Recherche en Hydrobiologie, B.P. 73, Uvira, Democratic Republic of Congo.

Filip A M Volckaert (FAM)

Laboratory of Biodiversity and Evolutionary Genomics, KU Leuven, Charles Deberiotstraat 32, B-3000, Leuven, Belgium.

Maarten P M Vanhove (MPM)

Laboratory of Biodiversity and Evolutionary Genomics, KU Leuven, Charles Deberiotstraat 32, B-3000, Leuven, Belgium.
Capacities for Biodiversity and Sustainable Development (CEBioS), Operational Directorate Natural Environment, Royal Belgian Institute of Natural Sciences, Vautierstraat 29, B-1000, Brussels, Belgium.
Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, CZ-611 37, Brno, Czech Republic.
Zoology Unit, Finnish Museum of Natural History, University of Helsinki, P.O.Box 17, FI-00014, Helsinki, Finland.
Hasselt University, Centre for Environmental Sciences, Research Group Zoology: Biodiversity & Toxicology, Agoralaan Gebouw D, B-3590, Diepenbeek, Belgium.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice
Animals Tail Swine Behavior, Animal Animal Husbandry

Classifications MeSH