Maternal high-fat diet during suckling programs visceral adiposity and epigenetic regulation of adipose tissue stearoyl-CoA desaturase-1 in offspring.
Journal
International journal of obesity (2005)
ISSN: 1476-5497
Titre abrégé: Int J Obes (Lond)
Pays: England
ID NLM: 101256108
Informations de publication
Date de publication:
12 2019
12 2019
Historique:
received:
04
09
2018
accepted:
10
12
2018
revised:
15
11
2018
pubmed:
10
1
2019
medline:
14
7
2020
entrez:
10
1
2019
Statut:
ppublish
Résumé
The lactation-suckling period is critical for white adipose tissue (WAT) development. Early postnatal nutrition influences later obesity risk but underlying mechanisms remain elusive. Here, we tested whether altered postnatal nutrition specifically during suckling impacts epigenetic regulation of key metabolic genes in WAT and alter long-term adiposity set point. We analyzed the effects of maternal high-fat (HF) feeding in rats exclusively during lactation-suckling on breast milk composition and its impact on male offspring visceral epidydimal (eWAT) and subcutaneous inguinal (iWAT) depots during suckling and in adulthood. Maternal HF feeding during lactation had no effect on mothers' body weight (BW) or global breast milk composition, but induced qualitative changes in breast milk fatty acid (FA) composition (high n-6/n-3 polyunsaturated FA ratio and low medium-chain FA content). During suckling, HF neonates showed increased BW and mass of both eWAT and iWAT depot but only eWAT displayed an enhanced adipogenic transcriptional signature. In adulthood, HF offspring were predisposed to weight gain and showed increased hyperplastic growth only in eWAT. This specific eWAT expansion was associated with increased expression and activity of stearoyl-CoA desaturase-1 (SCD1), a key enzyme of FA metabolism. SCD1 converts saturated FAs, e.g. palmitate and stearate, to monounsaturated FAs, palmitoleate and oleate, which are the predominant substrates for triglyceride synthesis. Scd1 upregulation in eWAT was associated with reduced DNA methylation in Scd1 promoter surrounding a PPARγ-binding region. Conversely, changes in SCD1 levels and methylation were not observed in iWAT, coherent with a depot-specific programming. Our data reveal that maternal HF feeding during suckling programs long-term eWAT expansion in part by SCD1 epigenetic reprogramming. This programming events occurred with drastic changes in breast milk FA composition, suggesting that dietary FAs are key metabolic programming factors in the early postnatal period.
Identifiants
pubmed: 30622312
doi: 10.1038/s41366-018-0310-z
pii: 10.1038/s41366-018-0310-z
doi:
Substances chimiques
Stearoyl-CoA Desaturase
EC 1.14.19.1
stearoyl-CoA desaturase SCD-1, rat
EC 1.14.19.1
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
2381-2393Références
Zimmet P, Alberti KG, Kaufman F, Tajima N, Silink M, Arslanian S, et al. The metabolic syndrome in children and adolescents—an IDF consensus report. Pediatr Diabetes. 2007;8:299–306.
pubmed: 17850473
doi: 10.1111/j.1399-5448.2007.00271.x
Lukaszewski MA, Eberle D, Vieau D, Breton C. Nutritional manipulations in the perinatal period program adipose tissue in offspring. Am J Physiol Endocrinol Metab. 2013;305:E1195–207.
pubmed: 24045869
doi: 10.1152/ajpendo.00231.2013
Bouret S, Levin BE, Ozanne SE. Gene-environment interactions controlling energy and glucose homeostasis and the developmental origins of obesity. Physiol Rev. 2015;95:47–82.
pubmed: 25540138
pmcid: 4281588
doi: 10.1152/physrev.00007.2014
Owen CG, Martin RM, Whincup PH, Smith GD, Cook DG. Effect of infant feeding on the risk of obesity across the life course: a quantitative review of published evidence. Pediatrics. 2005;115:1367–77.
pubmed: 15867049
doi: 10.1542/peds.2004-1176
Rudolph MC, Young BE, Lemas DJ, Palmer CE, Hernandez TL, Barbour LA, et al. Early infant adipose deposition is positively associated with the n-6 to n-3 fatty acid ratio in human milk independent of maternal BMI. Int J Obes. 2017;41:510–7.
doi: 10.1038/ijo.2016.211
Patel MS, Srinivasan M. Metabolic programming in the immediate postnatal life. Ann Nutr Metab. 2011;58(Suppl. 2):18–28.
pubmed: 21846978
pmcid: 3190171
doi: 10.1159/000328040
Sun B, Purcell RH, Terrillion CE, Yan J, Moran TH, Tamashiro KL. Maternal high-fat diet during gestation or suckling differentially affects offspring leptin sensitivity and obesity. Diabetes. 2012;61:2833–41.
pubmed: 22751689
pmcid: 3478561
doi: 10.2337/db11-0957
Desai M, Jellyman JK, Han G, Beall M, Lane RH, Ross MG. Maternal obesity and high-fat diet program offspring metabolic syndrome. Am J Obstet Gynecol. 2014;211:237 e1–237 e13.
doi: 10.1016/j.ajog.2014.03.025
Vogt MC, Paeger L, Hess S, Steculorum SM, Awazawa M, Hampel B, et al. Neonatal insulin action impairs hypothalamic neurocircuit formation in response to maternal high-fat feeding. Cell. 2014;156:495–509.
pubmed: 24462248
pmcid: 4101521
doi: 10.1016/j.cell.2014.01.008
Carberry AE, Colditz PB, Lingwood BE. Body composition from birth to 4.5 months in infants born to non-obese women. Pediatr Res. 2010;68:84–8.
pubmed: 20351656
doi: 10.1203/PDR.0b013e3181df5421
Birsoy K, Berry R, Wang T, Ceyhan O, Tavazoie S, Friedman JM, et al. Analysis of gene networks in white adipose tissue development reveals a role for ETS2 in adipogenesis. Development. 2011;138:4709–19.
pubmed: 21989915
pmcid: 3190384
doi: 10.1242/dev.067710
Han J, Lee JE, Jin J, Lim JS, Oh N, Kim K, et al. The spatiotemporal development of adipose tissue. Development. 2011;138:5027–37.
pubmed: 22028034
doi: 10.1242/dev.067686
Wang QA, Tao C, Gupta RK, Scherer PE. Tracking adipogenesis during white adipose tissue development, expansion and regeneration. Nat Med. 2013;19:1338–44.
pubmed: 23995282
pmcid: 4075943
doi: 10.1038/nm.3324
Knittle JL, Timmers K, Ginsberg-Fellner F, Brown RE, Katz DP. The growth of adipose tissue in children and adolescents. Cross-sectional and longitudinal studies of adipose cell number and size. J Clin Invest. 1979;63:239–46.
pubmed: 429551
pmcid: 371945
doi: 10.1172/JCI109295
Spalding KL, Arner E, Westermark PO, Bernard S, Buchholz BA, Bergmann O, et al. Dynamics of fat cell turnover in humans. Nature. 2008;453:783–7.
doi: 10.1038/nature06902
pubmed: 18454136
Borengasser SJ, Zhong Y, Kang P, Lindsey F, Ronis MJ, Badger TM, et al. Maternal obesity enhances white adipose tissue differentiation and alters genome-scale DNA methylation in male rat offspring. Endocrinology. 2013;154:4113–25.
pubmed: 23959936
pmcid: 3800750
doi: 10.1210/en.2012-2255
Liang X, Yang Q, Fu X, Rogers CJ, Wang B, Pan H, et al. Maternal obesity epigenetically alters visceral fat progenitor cell properties in male offspring mice. J Physiol. 2016;594:4453–66.
pubmed: 27060371
pmcid: 4967739
doi: 10.1113/JP272123
Lecoutre S, Oger F, Pourpe C, Butruille L, Marousez L, Dickes-Coopman A, et al. Maternal obesity programs increased leptin gene expression in rat male offspring via epigenetic modifications in a depot-specific manner. Mol Metab. 2017;6:922–30.
pubmed: 28752055
pmcid: 5518658
doi: 10.1016/j.molmet.2017.05.010
Lecoutre S, Pourpe C, Butruille L, Marousez L, Laborie C, Guinez C, et al. Reduced PPARgamma2 expression in adipose tissue of male rat offspring from obese dams is associated with epigenetic modifications. FASEB J. 2018;32:2768–78.
pubmed: 29295860
doi: 10.1096/fj.201700997R
Dearden L, Bouret SG, Ozanne SE. Sex and gender differences in developmental programming of metabolism. Mol Metab. 2018;15:8–19.
pubmed: 29773464
pmcid: 6066743
doi: 10.1016/j.molmet.2018.04.007
Lecoutre S, Deracinois B, Laborie C, Eberle D, Guinez C, Panchenko PE, et al. Depot- and sex-specific effects of maternal obesity in offspring’s adipose tissue. J Endocrinol. 2016;230:39–53.
pubmed: 27122310
doi: 10.1530/JOE-16-0037
Gors S, Kucia M, Langhammer M, Junghans P, Metges CC. Technical note: Milk composition in mice—methodological aspects and effects of mouse strain and lactation day. J Dairy Sci. 2009;92:632–7.
pubmed: 19164675
doi: 10.3168/jds.2008-1563
Pedrono F, Boulier-Monthean N, Catheline D, Legrand P. Impact of a standard rodent chow diet on tissue n-6 fatty acids, delta9-desaturation index, and plasmalogen mass in rats fed for one year. Lipids. 2015;50:1069–82.
pubmed: 26387025
doi: 10.1007/s11745-015-4068-y
Jones BH, Maher MA, Banz WJ, Zemel MB, Whelan J, Smith PJ, et al. Adipose tissue stearoyl-CoA desaturase mRNA is increased by obesity and decreased by polyunsaturated fatty acids. Am J Physiol. 1996;271:E44–9.
pubmed: 8760080
Mutch DM. Identifying regulatory hubs in obesity with nutrigenomics. Curr Opin Endocrinol Diabetes. 2006;13:431–7.
doi: 10.1097/01.med.0000244224.76033.06
Carobbio S, Rodriguez-Cuenca S, Vidal-Puig A. Origins of metabolic complications in obesity: ectopic fat accumulation. The importance of the qualitative aspect of lipotoxicity. Curr Opin Clin Nutr Metab Care. 2011;14:520–6.
pubmed: 21849895
doi: 10.1097/MCO.0b013e32834ad966
Cedernaes J, Alsio J, Vastermark A, Riserus U, Schioth HB. Adipose tissue stearoyl-CoA desaturase 1 index is increased and linoleic acid is decreased in obesity-prone rats fed a high-fat diet. Lipids Health Dis. 2013;12:2.
pubmed: 23298201
pmcid: 3558438
doi: 10.1186/1476-511X-12-2
Yew Tan C, Virtue S, Murfitt S, Roberts LD, Phua YH, Dale M, et al. Adipose tissue fatty acid chain length and mono-unsaturation increases with obesity and insulin resistance. Sci Rep. 2015;5:18366.
pubmed: 26679101
pmcid: 4683622
doi: 10.1038/srep18366
Man WC, Miyazaki M, Chu K, Ntambi J. Colocalization of SCD1 and DGAT2: implying preference for endogenous monounsaturated fatty acids in triglyceride synthesis. J Lipid Res. 2006;47:1928–39.
pubmed: 16751624
doi: 10.1194/jlr.M600172-JLR200
Mihara K. Structure and regulation of rat liver microsomal stearoyl-CoA desaturase gene. J Biochem. 1990;108:1022–9.
pubmed: 1982442
doi: 10.1093/oxfordjournals.jbchem.a123301
ALJohani AM, Syed DN, Ntambi JM. Insights into stearoyl-CoA desaturase-1 regulation of systemic metabolism. Trends Endocrinol Metab. 2017;28:831–42.
pubmed: 29089222
pmcid: 5701860
doi: 10.1016/j.tem.2017.10.003
Ntambi JM. Regulation of stearoyl-CoA desaturase by polyunsaturated fatty acids and cholesterol. J Lipid Res. 1999;40:1549–58.
pubmed: 10484602
doi: 10.1016/S0022-2275(20)33401-5
Soccio RE, Chen ER, Rajapurkar SR, Safabakhsh P, Marinis JM, Dispirito JR, et al. Genetic variation determines PPARgamma function and anti-diabetic drug response in vivo. Cell. 2015;162:33–44.
pubmed: 26140591
pmcid: 4493773
doi: 10.1016/j.cell.2015.06.025
Nielsen R, Pedersen TA, Hagenbeek D, Moulos P, Siersbaek R, Megens E, et al. Genome-wide profiling of PPARgamma:RXR and RNA polymerase II occupancy reveals temporal activation of distinct metabolic pathways and changes in RXR dimer composition during adipogenesis. Genes Dev. 2008;22:2953–67.
pubmed: 18981474
pmcid: 2577787
doi: 10.1101/gad.501108
Bray GA, Lee M, Bray TL. Weight gain of rats fed medium-chain triglycerides is less than rats fed long-chain triglycerides. Int J Obes. 1980;4:27–32.
pubmed: 7390698
Geliebter A, Torbay N, Bracco EF, Hashim SA, Van Itallie TB. Overfeeding with medium-chain triglyceride diet results in diminished deposition of fat. Am J Clin Nutr. 1983;37:1–4.
pubmed: 6849272
doi: 10.1093/ajcn/37.1.1
Muhlhausler BS, Ailhaud GP. Omega-6 polyunsaturated fatty acids and the early origins of obesity. Curr Opin Endocrinol Diabetes Obes. 2013;20:56–61.
pubmed: 23249760
doi: 10.1097/MED.0b013e32835c1ba7
Innis SM. Metabolic programming of long-term outcomes due to fatty acid nutrition in early life. Matern Child Nutr. 2011;7(Suppl. 2):112–23.
doi: 10.1111/j.1740-8709.2011.00318.x
pubmed: 21366871
pmcid: 6860640
Cawthorn WP, Scheller EL, MacDougald OA. Adipose tissue stem cells meet preadipocyte commitment: going back to the future. J Lipid Res. 2012;53:227–46.
pubmed: 22140268
pmcid: 3269153
doi: 10.1194/jlr.R021089
Jeffery E, Church CD, Holtrup B, Colman L, Rodeheffer MS. Rapid depot-specific activation of adipocyte precursor cells at the onset of obesity. Nat Cell Biol. 2015;17:376–85.
pubmed: 25730471
pmcid: 4380653
doi: 10.1038/ncb3122
Shao M, Vishvanath L, Busbuso NC, Hepler C, Shan B, Sharma AX, et al. De novo adipocyte differentiation from Pdgfrbeta(+) preadipocytes protects against pathologic visceral adipose expansion in obesity. Nat Commun. 2018;9:890.
pubmed: 29497032
pmcid: 5832777
doi: 10.1038/s41467-018-03196-x
Carobbio S, Hagen RM, Lelliott CJ, Slawik M, Medina-Gomez G, Tan CY, et al. Adaptive changes of the Insig1/SREBP1/SCD1 set point help adipose tissue to cope with increased storage demands of obesity. Diabetes. 2013;62:3697–708.
pubmed: 23919961
pmcid: 3806615
doi: 10.2337/db12-1748
Kolak M, Yki-Jarvinen H, Kannisto K, Tiikkainen M, Hamsten A, Eriksson P, et al. Effects of chronic rosiglitazone therapy on gene expression in human adipose tissue in vivo in patients with type 2 diabetes. J Clin Endocrinol Metab. 2007;92:720–4.
pubmed: 17148569
doi: 10.1210/jc.2006-1465
Yao-Borengasser A, Rassouli N, Varma V, Bodles AM, Rasouli N, Unal R, et al. Stearoyl-coenzyme A desaturase 1 gene expression increases after pioglitazone treatment and is associated with peroxisomal proliferator-activated receptor-gamma responsiveness. J Clin Endocrinol Metab. 2008;93:4431–9.
pubmed: 18697866
pmcid: 2582575
doi: 10.1210/jc.2008-0782
Flowers MT, Ade L, Strable MS, Ntambi JM. Combined deletion of SCD1 from adipose tissue and liver does not protect mice from obesity. J Lipid Res. 2012;53:1646–53.
pubmed: 22669918
pmcid: 3540837
doi: 10.1194/jlr.M027508
Ralston JC, Badoud F, Cattrysse B, McNicholas PD, Mutch DM. Inhibition of stearoyl-CoA desaturase-1 in differentiating 3T3-L1 preadipocytes upregulates elongase 6 and downregulates genes affecting triacylglycerol synthesis. Int J Obes. 2014;38:1449–56.
doi: 10.1038/ijo.2014.35
Ralston JC, Mutch DM. SCD1 inhibition during 3T3-L1 adipocyte differentiation remodels triacylglycerol, diacylglycerol and phospholipid fatty acid composition. Prostaglandins Leukot Essent Fat Acids. 2015;98:29–37.
doi: 10.1016/j.plefa.2015.04.008
Dragos SM, Bergeron KF, Desmarais F, Suitor K, Wright DC, Mounier C, et al. Reduced SCD1 activity alters markers of fatty acid reesterification, glyceroneogenesis, and lipolysis in murine white adipose tissue and 3T3-L1 adipocytes. Am J Physiol Cell Physiol. 2017;313:C295–304.
pubmed: 28659287
pmcid: 5625094
doi: 10.1152/ajpcell.00097.2017
Cao H, Gerhold K, Mayers JR, Wiest MM, Watkins SM, Hotamisligil GS. Identification of a lipokine, a lipid hormone linking adipose tissue to systemic metabolism. Cell. 2008;134:933–44.
pubmed: 18805087
pmcid: 2728618
doi: 10.1016/j.cell.2008.07.048
Hyun CK, Kim ED, Flowers MT, Liu X, Kim E, Strable M, et al. Adipose-specific deletion of stearoyl-CoA desaturase 1 up-regulates the glucose transporter GLUT1 in adipose tissue. Biochem Biophys Res Commun. 2010;399:480–6.
pubmed: 20655875
pmcid: 2936448
doi: 10.1016/j.bbrc.2010.07.072
Liang X, Yang Q, Zhang L, Maricelli JW, Rodgers BD, Zhu MJ, et al. Maternal high-fat diet during lactation impairs thermogenic function of brown adipose tissue in offspring mice. Sci Rep. 2016;6:34345.
pubmed: 27686741
pmcid: 5043374
doi: 10.1038/srep34345
Irizarry RA, Ladd-Acosta C, Wen B, Wu Z, Montano C, Onyango P, et al. The human colon cancer methylome shows similar hypo- and hypermethylation at conserved tissue-specific CpG island shores. Nat Genet. 2009;41:178–86.
pubmed: 19151715
pmcid: 2729128
doi: 10.1038/ng.298
Rao X, Evans J, Chae H, Pilrose J, Kim S, Yan P, et al. CpG island shore methylation regulates caveolin-1 expression in breast cancer. Oncogene. 2013;32:4519–28.
pubmed: 23128390
doi: 10.1038/onc.2012.474
Fradin D, Boelle PY, Belot MP, Lachaux F, Tost J, Besse C, et al. Genome-wide methylation analysis identifies specific epigenetic marks in severely obese children. Sci Rep. 2017;7:46311.
pubmed: 28387357
pmcid: 5384222
doi: 10.1038/srep46311
Breton CV, Marsit CJ, Faustman E, Nadeau K, Goodrich JM, Dolinoy DC, et al. Small-magnitude effect sizes in epigenetic end points are important in children’s environmental health studies: The Children’s Environmental Health and Disease Prevention Research Center’s Epigenetics Working Group. Environ Health Perspect. 2017;125:511–26.
pubmed: 28362264
pmcid: 5382002
doi: 10.1289/EHP595
Fujiki K, Shinoda A, Kano F, Sato R, Shirahige K, Murata M. PPARgamma-induced PARylation promotes local DNA demethylation by production of 5-hydroxymethylcytosine. Nat Commun. 2013;4:2262.
pubmed: 23912449
doi: 10.1038/ncomms3262
Yuan X, Tsujimoto K, Hashimoto K, Kawahori K, Hanzawa N, Hamaguchi M, et al. Epigenetic modulation of Fgf21 in the perinatal mouse liver ameliorates diet-induced obesity in adulthood. Nat Commun. 2018;9:636.
pubmed: 29434210
pmcid: 5809372
doi: 10.1038/s41467-018-03038-w
Verduci E, Banderali G, Barberi S, Radaelli G, Lops A, Betti F, et al. Epigenetic effects of human breast milk. Nutrients. 2014;6:1711–24.
pubmed: 24763114
pmcid: 4011062
doi: 10.3390/nu6041711
Eriksen KG, Christensen SH, Lind MV, Michaelsen KF. Human milk composition and infant growth. Curr Opin Clin Nutr Metab Care. 2018;21:200–6.
pubmed: 29461264
doi: 10.1097/MCO.0000000000000466