Maternal high-fat diet during suckling programs visceral adiposity and epigenetic regulation of adipose tissue stearoyl-CoA desaturase-1 in offspring.


Journal

International journal of obesity (2005)
ISSN: 1476-5497
Titre abrégé: Int J Obes (Lond)
Pays: England
ID NLM: 101256108

Informations de publication

Date de publication:
12 2019
Historique:
received: 04 09 2018
accepted: 10 12 2018
revised: 15 11 2018
pubmed: 10 1 2019
medline: 14 7 2020
entrez: 10 1 2019
Statut: ppublish

Résumé

The lactation-suckling period is critical for white adipose tissue (WAT) development. Early postnatal nutrition influences later obesity risk but underlying mechanisms remain elusive. Here, we tested whether altered postnatal nutrition specifically during suckling impacts epigenetic regulation of key metabolic genes in WAT and alter long-term adiposity set point. We analyzed the effects of maternal high-fat (HF) feeding in rats exclusively during lactation-suckling on breast milk composition and its impact on male offspring visceral epidydimal (eWAT) and subcutaneous inguinal (iWAT) depots during suckling and in adulthood. Maternal HF feeding during lactation had no effect on mothers' body weight (BW) or global breast milk composition, but induced qualitative changes in breast milk fatty acid (FA) composition (high n-6/n-3 polyunsaturated FA ratio and low medium-chain FA content). During suckling, HF neonates showed increased BW and mass of both eWAT and iWAT depot but only eWAT displayed an enhanced adipogenic transcriptional signature. In adulthood, HF offspring were predisposed to weight gain and showed increased hyperplastic growth only in eWAT. This specific eWAT expansion was associated with increased expression and activity of stearoyl-CoA desaturase-1 (SCD1), a key enzyme of FA metabolism. SCD1 converts saturated FAs, e.g. palmitate and stearate, to monounsaturated FAs, palmitoleate and oleate, which are the predominant substrates for triglyceride synthesis. Scd1 upregulation in eWAT was associated with reduced DNA methylation in Scd1 promoter surrounding a PPARγ-binding region. Conversely, changes in SCD1 levels and methylation were not observed in iWAT, coherent with a depot-specific programming. Our data reveal that maternal HF feeding during suckling programs long-term eWAT expansion in part by SCD1 epigenetic reprogramming. This programming events occurred with drastic changes in breast milk FA composition, suggesting that dietary FAs are key metabolic programming factors in the early postnatal period.

Identifiants

pubmed: 30622312
doi: 10.1038/s41366-018-0310-z
pii: 10.1038/s41366-018-0310-z
doi:

Substances chimiques

Stearoyl-CoA Desaturase EC 1.14.19.1
stearoyl-CoA desaturase SCD-1, rat EC 1.14.19.1

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

2381-2393

Références

Zimmet P, Alberti KG, Kaufman F, Tajima N, Silink M, Arslanian S, et al. The metabolic syndrome in children and adolescents—an IDF consensus report. Pediatr Diabetes. 2007;8:299–306.
pubmed: 17850473 doi: 10.1111/j.1399-5448.2007.00271.x
Lukaszewski MA, Eberle D, Vieau D, Breton C. Nutritional manipulations in the perinatal period program adipose tissue in offspring. Am J Physiol Endocrinol Metab. 2013;305:E1195–207.
pubmed: 24045869 doi: 10.1152/ajpendo.00231.2013
Bouret S, Levin BE, Ozanne SE. Gene-environment interactions controlling energy and glucose homeostasis and the developmental origins of obesity. Physiol Rev. 2015;95:47–82.
pubmed: 25540138 pmcid: 4281588 doi: 10.1152/physrev.00007.2014
Owen CG, Martin RM, Whincup PH, Smith GD, Cook DG. Effect of infant feeding on the risk of obesity across the life course: a quantitative review of published evidence. Pediatrics. 2005;115:1367–77.
pubmed: 15867049 doi: 10.1542/peds.2004-1176
Rudolph MC, Young BE, Lemas DJ, Palmer CE, Hernandez TL, Barbour LA, et al. Early infant adipose deposition is positively associated with the n-6 to n-3 fatty acid ratio in human milk independent of maternal BMI. Int J Obes. 2017;41:510–7.
doi: 10.1038/ijo.2016.211
Patel MS, Srinivasan M. Metabolic programming in the immediate postnatal life. Ann Nutr Metab. 2011;58(Suppl. 2):18–28.
pubmed: 21846978 pmcid: 3190171 doi: 10.1159/000328040
Sun B, Purcell RH, Terrillion CE, Yan J, Moran TH, Tamashiro KL. Maternal high-fat diet during gestation or suckling differentially affects offspring leptin sensitivity and obesity. Diabetes. 2012;61:2833–41.
pubmed: 22751689 pmcid: 3478561 doi: 10.2337/db11-0957
Desai M, Jellyman JK, Han G, Beall M, Lane RH, Ross MG. Maternal obesity and high-fat diet program offspring metabolic syndrome. Am J Obstet Gynecol. 2014;211:237 e1–237 e13.
doi: 10.1016/j.ajog.2014.03.025
Vogt MC, Paeger L, Hess S, Steculorum SM, Awazawa M, Hampel B, et al. Neonatal insulin action impairs hypothalamic neurocircuit formation in response to maternal high-fat feeding. Cell. 2014;156:495–509.
pubmed: 24462248 pmcid: 4101521 doi: 10.1016/j.cell.2014.01.008
Carberry AE, Colditz PB, Lingwood BE. Body composition from birth to 4.5 months in infants born to non-obese women. Pediatr Res. 2010;68:84–8.
pubmed: 20351656 doi: 10.1203/PDR.0b013e3181df5421
Birsoy K, Berry R, Wang T, Ceyhan O, Tavazoie S, Friedman JM, et al. Analysis of gene networks in white adipose tissue development reveals a role for ETS2 in adipogenesis. Development. 2011;138:4709–19.
pubmed: 21989915 pmcid: 3190384 doi: 10.1242/dev.067710
Han J, Lee JE, Jin J, Lim JS, Oh N, Kim K, et al. The spatiotemporal development of adipose tissue. Development. 2011;138:5027–37.
pubmed: 22028034 doi: 10.1242/dev.067686
Wang QA, Tao C, Gupta RK, Scherer PE. Tracking adipogenesis during white adipose tissue development, expansion and regeneration. Nat Med. 2013;19:1338–44.
pubmed: 23995282 pmcid: 4075943 doi: 10.1038/nm.3324
Knittle JL, Timmers K, Ginsberg-Fellner F, Brown RE, Katz DP. The growth of adipose tissue in children and adolescents. Cross-sectional and longitudinal studies of adipose cell number and size. J Clin Invest. 1979;63:239–46.
pubmed: 429551 pmcid: 371945 doi: 10.1172/JCI109295
Spalding KL, Arner E, Westermark PO, Bernard S, Buchholz BA, Bergmann O, et al. Dynamics of fat cell turnover in humans. Nature. 2008;453:783–7.
doi: 10.1038/nature06902 pubmed: 18454136
Borengasser SJ, Zhong Y, Kang P, Lindsey F, Ronis MJ, Badger TM, et al. Maternal obesity enhances white adipose tissue differentiation and alters genome-scale DNA methylation in male rat offspring. Endocrinology. 2013;154:4113–25.
pubmed: 23959936 pmcid: 3800750 doi: 10.1210/en.2012-2255
Liang X, Yang Q, Fu X, Rogers CJ, Wang B, Pan H, et al. Maternal obesity epigenetically alters visceral fat progenitor cell properties in male offspring mice. J Physiol. 2016;594:4453–66.
pubmed: 27060371 pmcid: 4967739 doi: 10.1113/JP272123
Lecoutre S, Oger F, Pourpe C, Butruille L, Marousez L, Dickes-Coopman A, et al. Maternal obesity programs increased leptin gene expression in rat male offspring via epigenetic modifications in a depot-specific manner. Mol Metab. 2017;6:922–30.
pubmed: 28752055 pmcid: 5518658 doi: 10.1016/j.molmet.2017.05.010
Lecoutre S, Pourpe C, Butruille L, Marousez L, Laborie C, Guinez C, et al. Reduced PPARgamma2 expression in adipose tissue of male rat offspring from obese dams is associated with epigenetic modifications. FASEB J. 2018;32:2768–78.
pubmed: 29295860 doi: 10.1096/fj.201700997R
Dearden L, Bouret SG, Ozanne SE. Sex and gender differences in developmental programming of metabolism. Mol Metab. 2018;15:8–19.
pubmed: 29773464 pmcid: 6066743 doi: 10.1016/j.molmet.2018.04.007
Lecoutre S, Deracinois B, Laborie C, Eberle D, Guinez C, Panchenko PE, et al. Depot- and sex-specific effects of maternal obesity in offspring’s adipose tissue. J Endocrinol. 2016;230:39–53.
pubmed: 27122310 doi: 10.1530/JOE-16-0037
Gors S, Kucia M, Langhammer M, Junghans P, Metges CC. Technical note: Milk composition in mice—methodological aspects and effects of mouse strain and lactation day. J Dairy Sci. 2009;92:632–7.
pubmed: 19164675 doi: 10.3168/jds.2008-1563
Pedrono F, Boulier-Monthean N, Catheline D, Legrand P. Impact of a standard rodent chow diet on tissue n-6 fatty acids, delta9-desaturation index, and plasmalogen mass in rats fed for one year. Lipids. 2015;50:1069–82.
pubmed: 26387025 doi: 10.1007/s11745-015-4068-y
Jones BH, Maher MA, Banz WJ, Zemel MB, Whelan J, Smith PJ, et al. Adipose tissue stearoyl-CoA desaturase mRNA is increased by obesity and decreased by polyunsaturated fatty acids. Am J Physiol. 1996;271:E44–9.
pubmed: 8760080
Mutch DM. Identifying regulatory hubs in obesity with nutrigenomics. Curr Opin Endocrinol Diabetes. 2006;13:431–7.
doi: 10.1097/01.med.0000244224.76033.06
Carobbio S, Rodriguez-Cuenca S, Vidal-Puig A. Origins of metabolic complications in obesity: ectopic fat accumulation. The importance of the qualitative aspect of lipotoxicity. Curr Opin Clin Nutr Metab Care. 2011;14:520–6.
pubmed: 21849895 doi: 10.1097/MCO.0b013e32834ad966
Cedernaes J, Alsio J, Vastermark A, Riserus U, Schioth HB. Adipose tissue stearoyl-CoA desaturase 1 index is increased and linoleic acid is decreased in obesity-prone rats fed a high-fat diet. Lipids Health Dis. 2013;12:2.
pubmed: 23298201 pmcid: 3558438 doi: 10.1186/1476-511X-12-2
Yew Tan C, Virtue S, Murfitt S, Roberts LD, Phua YH, Dale M, et al. Adipose tissue fatty acid chain length and mono-unsaturation increases with obesity and insulin resistance. Sci Rep. 2015;5:18366.
pubmed: 26679101 pmcid: 4683622 doi: 10.1038/srep18366
Man WC, Miyazaki M, Chu K, Ntambi J. Colocalization of SCD1 and DGAT2: implying preference for endogenous monounsaturated fatty acids in triglyceride synthesis. J Lipid Res. 2006;47:1928–39.
pubmed: 16751624 doi: 10.1194/jlr.M600172-JLR200
Mihara K. Structure and regulation of rat liver microsomal stearoyl-CoA desaturase gene. J Biochem. 1990;108:1022–9.
pubmed: 1982442 doi: 10.1093/oxfordjournals.jbchem.a123301
ALJohani AM, Syed DN, Ntambi JM. Insights into stearoyl-CoA desaturase-1 regulation of systemic metabolism. Trends Endocrinol Metab. 2017;28:831–42.
pubmed: 29089222 pmcid: 5701860 doi: 10.1016/j.tem.2017.10.003
Ntambi JM. Regulation of stearoyl-CoA desaturase by polyunsaturated fatty acids and cholesterol. J Lipid Res. 1999;40:1549–58.
pubmed: 10484602 doi: 10.1016/S0022-2275(20)33401-5
Soccio RE, Chen ER, Rajapurkar SR, Safabakhsh P, Marinis JM, Dispirito JR, et al. Genetic variation determines PPARgamma function and anti-diabetic drug response in vivo. Cell. 2015;162:33–44.
pubmed: 26140591 pmcid: 4493773 doi: 10.1016/j.cell.2015.06.025
Nielsen R, Pedersen TA, Hagenbeek D, Moulos P, Siersbaek R, Megens E, et al. Genome-wide profiling of PPARgamma:RXR and RNA polymerase II occupancy reveals temporal activation of distinct metabolic pathways and changes in RXR dimer composition during adipogenesis. Genes Dev. 2008;22:2953–67.
pubmed: 18981474 pmcid: 2577787 doi: 10.1101/gad.501108
Bray GA, Lee M, Bray TL. Weight gain of rats fed medium-chain triglycerides is less than rats fed long-chain triglycerides. Int J Obes. 1980;4:27–32.
pubmed: 7390698
Geliebter A, Torbay N, Bracco EF, Hashim SA, Van Itallie TB. Overfeeding with medium-chain triglyceride diet results in diminished deposition of fat. Am J Clin Nutr. 1983;37:1–4.
pubmed: 6849272 doi: 10.1093/ajcn/37.1.1
Muhlhausler BS, Ailhaud GP. Omega-6 polyunsaturated fatty acids and the early origins of obesity. Curr Opin Endocrinol Diabetes Obes. 2013;20:56–61.
pubmed: 23249760 doi: 10.1097/MED.0b013e32835c1ba7
Innis SM. Metabolic programming of long-term outcomes due to fatty acid nutrition in early life. Matern Child Nutr. 2011;7(Suppl. 2):112–23.
doi: 10.1111/j.1740-8709.2011.00318.x pubmed: 21366871 pmcid: 6860640
Cawthorn WP, Scheller EL, MacDougald OA. Adipose tissue stem cells meet preadipocyte commitment: going back to the future. J Lipid Res. 2012;53:227–46.
pubmed: 22140268 pmcid: 3269153 doi: 10.1194/jlr.R021089
Jeffery E, Church CD, Holtrup B, Colman L, Rodeheffer MS. Rapid depot-specific activation of adipocyte precursor cells at the onset of obesity. Nat Cell Biol. 2015;17:376–85.
pubmed: 25730471 pmcid: 4380653 doi: 10.1038/ncb3122
Shao M, Vishvanath L, Busbuso NC, Hepler C, Shan B, Sharma AX, et al. De novo adipocyte differentiation from Pdgfrbeta(+) preadipocytes protects against pathologic visceral adipose expansion in obesity. Nat Commun. 2018;9:890.
pubmed: 29497032 pmcid: 5832777 doi: 10.1038/s41467-018-03196-x
Carobbio S, Hagen RM, Lelliott CJ, Slawik M, Medina-Gomez G, Tan CY, et al. Adaptive changes of the Insig1/SREBP1/SCD1 set point help adipose tissue to cope with increased storage demands of obesity. Diabetes. 2013;62:3697–708.
pubmed: 23919961 pmcid: 3806615 doi: 10.2337/db12-1748
Kolak M, Yki-Jarvinen H, Kannisto K, Tiikkainen M, Hamsten A, Eriksson P, et al. Effects of chronic rosiglitazone therapy on gene expression in human adipose tissue in vivo in patients with type 2 diabetes. J Clin Endocrinol Metab. 2007;92:720–4.
pubmed: 17148569 doi: 10.1210/jc.2006-1465
Yao-Borengasser A, Rassouli N, Varma V, Bodles AM, Rasouli N, Unal R, et al. Stearoyl-coenzyme A desaturase 1 gene expression increases after pioglitazone treatment and is associated with peroxisomal proliferator-activated receptor-gamma responsiveness. J Clin Endocrinol Metab. 2008;93:4431–9.
pubmed: 18697866 pmcid: 2582575 doi: 10.1210/jc.2008-0782
Flowers MT, Ade L, Strable MS, Ntambi JM. Combined deletion of SCD1 from adipose tissue and liver does not protect mice from obesity. J Lipid Res. 2012;53:1646–53.
pubmed: 22669918 pmcid: 3540837 doi: 10.1194/jlr.M027508
Ralston JC, Badoud F, Cattrysse B, McNicholas PD, Mutch DM. Inhibition of stearoyl-CoA desaturase-1 in differentiating 3T3-L1 preadipocytes upregulates elongase 6 and downregulates genes affecting triacylglycerol synthesis. Int J Obes. 2014;38:1449–56.
doi: 10.1038/ijo.2014.35
Ralston JC, Mutch DM. SCD1 inhibition during 3T3-L1 adipocyte differentiation remodels triacylglycerol, diacylglycerol and phospholipid fatty acid composition. Prostaglandins Leukot Essent Fat Acids. 2015;98:29–37.
doi: 10.1016/j.plefa.2015.04.008
Dragos SM, Bergeron KF, Desmarais F, Suitor K, Wright DC, Mounier C, et al. Reduced SCD1 activity alters markers of fatty acid reesterification, glyceroneogenesis, and lipolysis in murine white adipose tissue and 3T3-L1 adipocytes. Am J Physiol Cell Physiol. 2017;313:C295–304.
pubmed: 28659287 pmcid: 5625094 doi: 10.1152/ajpcell.00097.2017
Cao H, Gerhold K, Mayers JR, Wiest MM, Watkins SM, Hotamisligil GS. Identification of a lipokine, a lipid hormone linking adipose tissue to systemic metabolism. Cell. 2008;134:933–44.
pubmed: 18805087 pmcid: 2728618 doi: 10.1016/j.cell.2008.07.048
Hyun CK, Kim ED, Flowers MT, Liu X, Kim E, Strable M, et al. Adipose-specific deletion of stearoyl-CoA desaturase 1 up-regulates the glucose transporter GLUT1 in adipose tissue. Biochem Biophys Res Commun. 2010;399:480–6.
pubmed: 20655875 pmcid: 2936448 doi: 10.1016/j.bbrc.2010.07.072
Liang X, Yang Q, Zhang L, Maricelli JW, Rodgers BD, Zhu MJ, et al. Maternal high-fat diet during lactation impairs thermogenic function of brown adipose tissue in offspring mice. Sci Rep. 2016;6:34345.
pubmed: 27686741 pmcid: 5043374 doi: 10.1038/srep34345
Irizarry RA, Ladd-Acosta C, Wen B, Wu Z, Montano C, Onyango P, et al. The human colon cancer methylome shows similar hypo- and hypermethylation at conserved tissue-specific CpG island shores. Nat Genet. 2009;41:178–86.
pubmed: 19151715 pmcid: 2729128 doi: 10.1038/ng.298
Rao X, Evans J, Chae H, Pilrose J, Kim S, Yan P, et al. CpG island shore methylation regulates caveolin-1 expression in breast cancer. Oncogene. 2013;32:4519–28.
pubmed: 23128390 doi: 10.1038/onc.2012.474
Fradin D, Boelle PY, Belot MP, Lachaux F, Tost J, Besse C, et al. Genome-wide methylation analysis identifies specific epigenetic marks in severely obese children. Sci Rep. 2017;7:46311.
pubmed: 28387357 pmcid: 5384222 doi: 10.1038/srep46311
Breton CV, Marsit CJ, Faustman E, Nadeau K, Goodrich JM, Dolinoy DC, et al. Small-magnitude effect sizes in epigenetic end points are important in children’s environmental health studies: The Children’s Environmental Health and Disease Prevention Research Center’s Epigenetics Working Group. Environ Health Perspect. 2017;125:511–26.
pubmed: 28362264 pmcid: 5382002 doi: 10.1289/EHP595
Fujiki K, Shinoda A, Kano F, Sato R, Shirahige K, Murata M. PPARgamma-induced PARylation promotes local DNA demethylation by production of 5-hydroxymethylcytosine. Nat Commun. 2013;4:2262.
pubmed: 23912449 doi: 10.1038/ncomms3262
Yuan X, Tsujimoto K, Hashimoto K, Kawahori K, Hanzawa N, Hamaguchi M, et al. Epigenetic modulation of Fgf21 in the perinatal mouse liver ameliorates diet-induced obesity in adulthood. Nat Commun. 2018;9:636.
pubmed: 29434210 pmcid: 5809372 doi: 10.1038/s41467-018-03038-w
Verduci E, Banderali G, Barberi S, Radaelli G, Lops A, Betti F, et al. Epigenetic effects of human breast milk. Nutrients. 2014;6:1711–24.
pubmed: 24763114 pmcid: 4011062 doi: 10.3390/nu6041711
Eriksen KG, Christensen SH, Lind MV, Michaelsen KF. Human milk composition and infant growth. Curr Opin Clin Nutr Metab Care. 2018;21:200–6.
pubmed: 29461264 doi: 10.1097/MCO.0000000000000466

Auteurs

Laura Butruille (L)

Univ. Lille, EA4489, Équipe Malnutrition Maternelle et Programmation des Maladies Métaboliques, F-59000, Lille, France.

Lucie Marousez (L)

Univ. Lille, EA4489, Équipe Malnutrition Maternelle et Programmation des Maladies Métaboliques, F-59000, Lille, France.

Charlène Pourpe (C)

Univ. Lille, EA4489, Équipe Malnutrition Maternelle et Programmation des Maladies Métaboliques, F-59000, Lille, France.

Frédérik Oger (F)

Univ. Lille, EA4489, Équipe Malnutrition Maternelle et Programmation des Maladies Métaboliques, F-59000, Lille, France.

Simon Lecoutre (S)

Univ. Lille, EA4489, Équipe Malnutrition Maternelle et Programmation des Maladies Métaboliques, F-59000, Lille, France.

Daniel Catheline (D)

Laboratoire de Biochimie et Nutrition Humaine INRA 1378, Agrocampus Ouest, 65 rue de Saint Brieuc, 35042, Rennes cedex, France.

Solvig Görs (S)

Leibniz Institute for Farm Animal Biology (FBN), Institute of Nutritional Physiology, D-18196, Dummerstorf, Germany.

Cornelia C Metges (CC)

Leibniz Institute for Farm Animal Biology (FBN), Institute of Nutritional Physiology, D-18196, Dummerstorf, Germany.

Céline Guinez (C)

Univ. Lille, EA4489, Équipe Malnutrition Maternelle et Programmation des Maladies Métaboliques, F-59000, Lille, France.

Christine Laborie (C)

Univ. Lille, EA4489, Équipe Malnutrition Maternelle et Programmation des Maladies Métaboliques, F-59000, Lille, France.

Philippe Deruelle (P)

Univ. Lille, EA4489, Équipe Malnutrition Maternelle et Programmation des Maladies Métaboliques, F-59000, Lille, France.

Jérôme Eeckhoute (J)

Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, F-59000, Lille, France.

Christophe Breton (C)

Univ. Lille, EA4489, Équipe Malnutrition Maternelle et Programmation des Maladies Métaboliques, F-59000, Lille, France.

Philippe Legrand (P)

Laboratoire de Biochimie et Nutrition Humaine INRA 1378, Agrocampus Ouest, 65 rue de Saint Brieuc, 35042, Rennes cedex, France.

Jean Lesage (J)

Univ. Lille, EA4489, Équipe Malnutrition Maternelle et Programmation des Maladies Métaboliques, F-59000, Lille, France.

Delphine Eberlé (D)

Univ. Lille, EA4489, Équipe Malnutrition Maternelle et Programmation des Maladies Métaboliques, F-59000, Lille, France. delphine.eberle@univ-lille.fr.

Articles similaires

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male
Humans Meals Time Factors Female Adult

Classifications MeSH