Lower total cerebral arterial flow contributes to cognitive performance in multiple sclerosis patients.
Doppler
MRI
MS
cerebral arterial blood flow
cognition
Journal
Multiple sclerosis (Houndmills, Basingstoke, England)
ISSN: 1477-0970
Titre abrégé: Mult Scler
Pays: England
ID NLM: 9509185
Informations de publication
Date de publication:
02 2020
02 2020
Historique:
pubmed:
10
1
2019
medline:
15
12
2020
entrez:
10
1
2019
Statut:
ppublish
Résumé
The cognitive performance in multiple sclerosis (MS) patients declines with aging, longer disease duration, and possibly cardiovascular comorbidities. We investigated whether lower total cerebral arterial blood flow (CABF) measured at the level of the carotid and vertebral arteries may contribute to worse cognitive performance in 132 MS patients and 47 healthy controls. Total CABF was evaluated with extracranial Doppler, whereas structural T2-lesion volume (LV) and gray matter volume (GMV) were measured on 3T MRI. The cognitive performance was assessed by Symbol Digit Modalities Test (SDMT), Brief Visuospatial Memory Test-Revised (BVMT-R), and California Verbal Learning Test-Second Edition (CVLT-II). Analysis of covariance, partial correlation, and regression models were used to test the differences between study groups and cognition/CABF correlations. False discovery rate (FDR)-corrected (Benjamini-Hochberg) Association between lower total CABF and the lower cognitive performance was observed only in MS patients ( Cognitively impaired MS patients presented with lower total CABF. Altered CABF may be a result of reduced metabolic rate and might contribute to abnormal cognitive aging in MS.
Sections du résumé
BACKGROUND
The cognitive performance in multiple sclerosis (MS) patients declines with aging, longer disease duration, and possibly cardiovascular comorbidities.
OBJECTIVES
We investigated whether lower total cerebral arterial blood flow (CABF) measured at the level of the carotid and vertebral arteries may contribute to worse cognitive performance in 132 MS patients and 47 healthy controls.
METHODS
Total CABF was evaluated with extracranial Doppler, whereas structural T2-lesion volume (LV) and gray matter volume (GMV) were measured on 3T MRI. The cognitive performance was assessed by Symbol Digit Modalities Test (SDMT), Brief Visuospatial Memory Test-Revised (BVMT-R), and California Verbal Learning Test-Second Edition (CVLT-II). Analysis of covariance, partial correlation, and regression models were used to test the differences between study groups and cognition/CABF correlations. False discovery rate (FDR)-corrected (Benjamini-Hochberg)
RESULTS
Association between lower total CABF and the lower cognitive performance was observed only in MS patients (
CONCLUSION
Cognitively impaired MS patients presented with lower total CABF. Altered CABF may be a result of reduced metabolic rate and might contribute to abnormal cognitive aging in MS.
Identifiants
pubmed: 30625030
doi: 10.1177/1352458518819608
pmc: PMC6616024
mid: NIHMS1515285
doi:
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
201-209Subventions
Organisme : NCATS NIH HHS
ID : UL1 TR001412
Pays : United States
Références
AJNR Am J Neuroradiol. 2018 Jan;39(1):123-130
pubmed: 29217748
Behav Neurol. 2018 Aug 16;2018:7290431
pubmed: 30186531
AJNR Am J Neuroradiol. 2018 Sep;39(9):1703-1709
pubmed: 30049718
Brain Pathol. 2017 Nov;27(6):707-722
pubmed: 27864848
Mult Scler. 2014 Mar;20(3):365-73
pubmed: 23836878
Arch Neurol. 2009 Sep;66(9):1144-50
pubmed: 19752305
Am J Cardiol. 2011 Nov 1;108(9):1346-51
pubmed: 21880293
PLoS One. 2011;6(11):e28062
pubmed: 22140507
Brain. 2016 Nov 1;139(11):2957-2969
pubmed: 27591113
J Neuroimaging. 2018 Sep;28(5):490-495
pubmed: 29856910
N Engl J Med. 2018 Jan 11;378(2):169-180
pubmed: 29320652
Nat Rev Neurol. 2018 Apr;14(4):199-213
pubmed: 29521337
Eur J Neurol. 2019 Jan;26(1):87-e8
pubmed: 30103277
Neurobiol Aging. 2007 Mar;28(3):477-83
pubmed: 16469418
Neuroimage. 2012 Jan 2;59(1):331-9
pubmed: 21820063
Mult Scler. 2012 Nov;18(11):1570-6
pubmed: 22466702
JAMA Neurol. 2014 Oct;71(10):1275-81
pubmed: 25133874
Lancet Neurol. 2011 Jul;10(7):657-66
pubmed: 21683931
J Neurol Neurosurg Psychiatry. 2016 Feb;87(2):181-7
pubmed: 25722366
J Neurol Neurosurg Psychiatry. 2004 Sep;75(9):1288-93
pubmed: 15314117
Mult Scler. 2016 Nov;22(13):1685-1694
pubmed: 26846987
Mult Scler. 2017 Apr;23(5):721-733
pubmed: 28206827
Ann Neurol. 2011 Feb;69(2):292-302
pubmed: 21387374
Brain. 2004 Jan;127(Pt 1):111-9
pubmed: 14570816
PLoS One. 2014 Apr 09;9(4):e93715
pubmed: 24718105
Lancet Neurol. 2015 Mar;14(3):302-17
pubmed: 25662900
Neuroimage. 2002 Sep;17(1):479-89
pubmed: 12482100
Neurology. 2013 Sep 10;81(11):977-83
pubmed: 23935177
J Neurol Neurosurg Psychiatry. 2014 May;85(5):544-51
pubmed: 24039024
Nat Rev Neurol. 2011 May 10;7(6):332-42
pubmed: 21556031
Neurology. 2017 Dec 5;89(23):2327-2334
pubmed: 29117962
J Neuroimaging. 2012 Apr;22(2):129-36
pubmed: 21447022
Nat Rev Neurol. 2017 Jun;13(6):375-382
pubmed: 28303911
Physiol Rep. 2017 Sep;5(17):
pubmed: 28912128
AJNR Am J Neuroradiol. 2012 Oct;33(9):1779-85
pubmed: 22538071
BMC Neurosci. 2018 Apr 12;19(1):21
pubmed: 29649969