Insights into siRNA Transfection in Suspension: Efficient Gene Silencing in Human Mesenchymal Stem Cells Encapsulated in Hyaluronic Acid Hydrogel.


Journal

Biomacromolecules
ISSN: 1526-4602
Titre abrégé: Biomacromolecules
Pays: United States
ID NLM: 100892849

Informations de publication

Date de publication:
11 03 2019
Historique:
pubmed: 16 1 2019
medline: 28 5 2020
entrez: 16 1 2019
Statut: ppublish

Résumé

Small interfering RNAs (siRNAs) are powerful tools for post-transcriptional gene silencing, which offers enormous opportunities for tissue engineering applications. However, poor serum stability, inefficient intracellular delivery, and inevitable toxicity of transfection reagents are the key barriers for their clinical translation. Thus, innovative strategies that allow safe and efficient intracellular delivery of the nucleic acid drugs at the desired site is urgently needed for a smooth clinical translation of therapeutically appealing siRNA-based technology. In this regard, we have developed an innovative siRNA transfection protocol that employs a short incubation time of just 5 min. This allows easy transfection in suspension followed by transplantation of the cells in a hyaluronic acid (HA) hydrogel system. We also report here the unique ability of siRNA to bind HA that was quantified by siRNA release and rheological characterization of the HA-hydrogel. Such interactions also showed promising results to deliver functional siRNA in suspension transfection conditions within 30 min using native HA, although removal of excess HA by centrifugation seem to be essential. In the 2D experiments, suspension transfection of hMSCs with RNAiMAX resulted in ≈90% gene silencing (with or without removal of the excess reagent by centrifugation), while HA demonstrated a modest ≈40% gene silencing after removal of excess reagent after 30 min. Transplantation of such transfected cells in the HA-hydrogel system demonstrated an improved knockdown (≈90% and ≈60% with RNAiMAX and HA respectively after 48 h), with lower cytotoxicity (up to 5-days) as determined by PrestoBlue assay. The gene silencing efficiency in the 2D and 3D conditions were also confirmed at the protein levels by Western blot analysis. We postulate this novel transfection method could be applied for in vivo applications as it allows minimal manipulation of cells that are to be transplanted and reduce toxicity.

Identifiants

pubmed: 30642167
doi: 10.1021/acs.biomac.8b01712
doi:

Substances chimiques

Hydrogels 0
RNA, Small Interfering 0
Hyaluronic Acid 9004-61-9

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

1317-1324

Auteurs

Maruthibabu Paidikondala (M)

Translational Chemical Biology Laboratory, Polymer Chemistry Division, Department of Chemistry - Ångström Laboratory , Uppsala University , 751 21 Uppsala , Sweden.

Ganesh N Nawale (GN)

Translational Chemical Biology Laboratory, Polymer Chemistry Division, Department of Chemistry - Ångström Laboratory , Uppsala University , 751 21 Uppsala , Sweden.

Oommen P Varghese (OP)

Translational Chemical Biology Laboratory, Polymer Chemistry Division, Department of Chemistry - Ångström Laboratory , Uppsala University , 751 21 Uppsala , Sweden.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH